
Geographical Question Answering Leveraging Neural
Language Models for Passage Retrieval

João Miguel de Almeida Vares Coelho

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor(s): Prof. Bruno Emanuel da Graça Martins
Prof. João Miguel da Costa Magalhães

Examination Committee

Chairperson: Prof. João António Madeiras Pereira
Supervisor: Prof. Bruno Emanuel da Graça Martins

Member of the Committee: Prof. Pável Pereira Calado

November 2021



ii



Acknowledgments

I would like to thank my supervisors, whose guidance was paramount for the realization of this

dissertation. My colleagues with whom I had multiple discussions about this work, and my friends

who where there for the much needed distractions. Finally, my family who have always supported me

throughout this journey.

This research was partially supported through the Fundação para a Ciência e Tecnologia (FCT),

namely through the project grant with reference PTDC/CCI-CIF/32607/2017 (MIMU), as well as through

the INESC-ID and NOVA LINCS multi-annual funding from the PIDDAC programme, respectively with

references UIDB/50021/2020 and UIDP/04516/2020. I also gratefully acknowledge the support of the

NVIDIA Corporation, with the donation of the two Titan Xp GPUs used in the experiments.

iii



iv



Resumo

Esta tese de mestrado foca na tarefa de passage retrieval, que consiste em identificar as passagens

mais relevantes de uma coleção de documentos que possam responder a uma dada questão. Desen-

volvimentos recentes nesta tarefa utilizam redes neuronais profundas, mais especificamente métodos

baseados em Transformadores, treinados em grandes coleções de dados como o MS-MARCO. Ape-

sar do progresso obtido por estes métodos, poucos estudos focaram especificamente em questões

geo-espaciais (i.e., questões sobre localizações, ou questões sobre informação especı́fica de lugares).

Desta forma, este projeto focou no domı́nio geográfico, explorando o uso de modelos neuronais

para recuperação de informação no contexto de questões geo-espaciais, utilizando um subconjunto

das instâncias presentes na coleção MS-MARCO, cujas questões e passagens contêm entidades ge-

ográficas. O subconjunto foi caraterizado, e uma estratégia de re-ranking baseada na distância ge-

ográfica foi analisada, tendo sido depois utilizada para amostrar exemplos negativos difı́ceis para o

treino dos modelos.

Modelos seguindo as arquiteturas bi-encoder e cross-encoder foram treinados utilizando um método

de amostragem de negativos baseado na distância geográfica, considerando a intuição de que pas-

sagens negativas que contenham entidades espaciais menos distantes das que estão na questão vão,

em princı́pio, ser mais desafiantes para o modelo. Técnicas como expansão de dados e destilação de

conhecimento foram empregues no treino dos modelos mais eficientes, baseados em bi-encoders, de

modo a melhorar os resultados.

As experiências mostram que os modelos treinados seguindo a estratégia descrita neste docu-

mento obtêm melhores resultados no subconjunto de perguntas geográficas do MS-MARCO, quando

comparados com os modelos base.

Palavras-chave: Recuperação de Informação Geográfica, Resposta a Questões Geográficas,

Recuperação de Passagens, Modelos de Linguagem Neuronais, Transformadores

v



vi



Abstract

This M.Sc. thesis addresses the problem of passage retrieval for question answering systems, which

concerns with identifying the top-ranked passages within a collection that may answer a given question.

Recent developments on passage retrieval rely on deep neural networks, specifically on methods based

on Transformer models, trained on large datasets like MS-MARCO. Despite significant progress in ap-

proaches for retrieving (or re-ranking) passages from a document collection according to their relevance

to an input query, few studies have specifically looked at geo-spatial queries (i.e., where-questions di-

rectly concerning locations, and also questions covering other informational needs relating to places,

their types, and affordances).

As such, this project focused on the geographical domain, exploring the use of neural retrieval models

in the context of geo-spatial queries, using a subset of the MS-MARCO large benchmark dataset, with

questions and passages containing place-names. The subset of data was characterized, and a re-

ranking strategy based on geographic distance was analysed, which was further used to sample hard

negatives (i.e., irrelevant passages) for model training.

Models following both bi-encoder and cross-encoder architectures were fine-tuned using a negative

sampling procedure which leveraged the geographic entities within queries and passages, considering

the intuition that negative passages containing spatio-temporal entities that are closer to the ones in the

query should, in principle, be more challenging. Other techniques were employed for model training,

such as data expansion and knowledge distillation.

Results show that the fine-tuning methods do indeed improve the results on the geographic test set,

for both cross-encoders and bi-encoders, when compared to the base models.

Keywords: Geographic Information Retrieval, Geographical Question Answering, Passage Re-

trieval, Neural Language Models, Transformers

vii



viii



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction 1

1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Results and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Fundamental Concepts 5

2.1 Representing Textual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Multi Layer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Bidirectional Encoder Representations from Transformers . . . . . . . . . . . . . . . . . . 11

2.4 Ranking for Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 BM25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 Learning To Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Related Work 15

3.1 Passage Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Ranking with Cross-Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.2 Ranking with Bi-Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.3 Expansion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.4 Kernel Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Geographical Retrieval Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ix



4 A Dataset for Geographic Question Answering 27

4.1 Geoparsing Textual Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 The MS-MARCO Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Geographical Subset of MS-MARCO . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.2 Data Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Neural Models for Geographic Passage Re-ranking 33

5.1 The Bi-Encoder and Cross-Encoder Architectures . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Model Fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.1 Geographical Re-ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.2 Hard Negative Sampling and Batching . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.3 Cross-Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.4 Bi-Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Knowledge Distillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Experimental Evaluation 39

6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.3 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Conclusions and Future Work 49

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Bibliography 51

x



List of Tables

6.1 MRR@10 and R@{1,5,10,100, 500, 1000} for the geo-spatial subset of MS-MARCO,

using the different models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 MRR@10 and R@{1,5,10,100, 500, 1000} for the full MS-MARCO development set, us-

ing the different models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3 MRR@10 for the full MS-MARCO development set, grouping queries by their answer type. 43

6.4 MRR@10 and R@{1,5,10,100, 500, 1000} for the geo-spatial subset of MS-MARCO,

using the final bi-encoder, with previous results for comparison. . . . . . . . . . . . . . . . 44

6.5 Individual Reciprocal Rank (RR) scores for the positive passages associated to the 20 test

queries with the highest difference in the scores obtained by the base and the fine-tuned

models (averaged scores for cross-encoders and bi-encoders). . . . . . . . . . . . . . . . 45

6.6 Tokens that contribute to classification for the cross-encoders. The higher the shade of

red, the higher the contribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.7 Tokens that contribute to classification for the bi-encoders. The higher the shade of red,

the higher the contribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.8 MRR@10 and R@{1,5,10,100, 500, 1000} for the geographic MS-MARCO development

set, for the base models and the best fine-tuned versions. . . . . . . . . . . . . . . . . . . 47

xi



xii



List of Figures

2.1 General architecture of the Transformer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Components of a Transformer encoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Feed-forward step of a Transformer encoder. . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Training BERT with a masked language modelling objective. . . . . . . . . . . . . . . . . . 12

2.5 Training BERT with a next sentence prediction task. . . . . . . . . . . . . . . . . . . . . . 12

3.1 Cross-encoder as a stack of N encoders. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Bi-encoder as two stacks of N encoders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 A query and its relevant passage, from MS-MARCO development set. . . . . . . . . . . . 28

4.2 Mordecai output when processing the query house for rent in hickory creek texas without

concatenation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Mordecai output when processing the query house for rent in hickory creek texas con-

catenated with the relevant passage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Geo-spatial distribution for places within queries of the MS-MARCO development set. . . 30

4.5 Geo-spatial distribution for places within passages associated with queries of the MS-

MARCO development set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.6 Number of entities per query in the geographic subset of MS-MARCO development set. . 31

5.1 Architecture for bi-encoder (left) and cross-encoder (right) retrieval models. . . . . . . . . 34

5.2 Distribution of distance between queries from MS-MARCO geographic subset and corre-

sponding relevant passages, top-25 BM25 passages, and top-100 BM25 passages. . . . 35

5.3 Example of computing the Spearman rank correlation coefficient for a single query. . . . . 38

6.1 MRR@10 evolution during training for both cross-encoder and bi-encoders, considering

the validation task of top-25 re-ranking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Final training pipeline for a bi-encoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xiii



xiv



Chapter 1

Introduction

Question Answering (QA), i.e. the process of computing valid answers to questions formulated in

natural language, is gaining increased attention both in industry and academia. Passage retrieval is

a crucial component of QA systems, concerning the identification of top-ranked passages containing

the answer for a given question, from a target document collection. Recent studies in the area have

proposed a variety of passage retrieval methods based on neural language models [Liu et al., 2020],

using large datasets such as MS-MARCO [Campos et al., 2016] for model training and evaluation.

Geographic questions (e.g., questions relating to where a particular event has taken place) are often

posed to QA systems, motivating the development of tailored approaches. Geographic questions are

also featured prominently in the MS-MARCO dataset [Hamzei et al., 2019, 2021], although current mod-

els for passage retrieval are not explicitly designed to explore geo-spatial properties when deciding on

the matches between questions and passages. Previous studies have addressed the inherent problems

of Geographic Question Answering (GeoQA) [Mai et al., 2021] and Geographic Information Retrieval

(GIR) [Purves et al., 2018]. For instance, the types of queries GeoQA systems aim to answer are very

diverse, and different types of questions need data from different sources (e.g., instead of retrieving an-

swers from document collections, several GeoQA studies have instead relied on structured knowledge

bases describing geo-spatial information [Haas and Riezler, 2016, Lawrence and Riezler, 2016, Punjani

et al., 2018]). Also, the vagueness of some geographic concepts increases the difficulty of properly an-

swering the questions formulated by users. This dissertation focused mostly factoid questions for which

passages can be extracted from a background collection, without considering other external knowledge

bases.

The main objectives of this work were to extract the geographic contents of MS-MARCO, a large

open-domain passage retrieval dataset, and to explore the usage of neural retrieval models in the con-

text of geo-spatial queries, leveraging techniques that exploit the geographic properties of the queries

and passages. A thorough search of the relevant literature showed that this is the first work to ad-

dress document-based GeoQA at the scale of very large document collections, with the Transformer

architecture.

1



1.1 Methodology

The first step towards the realization of this project was a detailed revision of related work, both on

open-domain passage retrieval and the specific case of geographic information retrieval. This showed

that while neural architectures such as cross-encoders and bi-encoders achieve state-of-the-art results

on this task, few studies have specifically looked at geo-spatial queries.

This way, a subset of MS-MARCO (a large benchmark dataset), containing geo-spatial queries and

passages, was extracted and characterized. The construction of this subset leveraged Mordecai, an

open-source toponym resolution system to disambiguate place-names into geo-spatial coordinates. Af-

ter analyzing the relation between the distance and relevancy, a re-ranking strategy based on the geo-

graphic distance between places mentioned in the queries, and places within the passages, was eval-

uated. The results obtained by this strategy led to the hypothesis that the geographic distances could

play an important role when sampling negatives for model training.

As such, starting from baseline passage re-ranking models pre-trained on the full MS-MARCO

dataset, and considering either bi-encoder or cross-encoder architectures with similar training setups,

the models were fine-tuned using a geographically-aware negative sampling procedure. Specifically, the

negative passages were selected from those that score highly in terms of BM25 and poorly in terms

of geographic proximity (i.e., the passages that are lexically similar to the query, and at the same time

geographically distant, are perhaps more challenging for the passage re-ranking models).

Besides model training with a standard cross-entropy loss, a knowledge distillation procedure was

also explored, based on a differentiable approximation to Spearman’s rank correlation coefficient [Blon-

del et al., 2020]. The idea was to try approximating the results of fine-tuned cross-encoders with com-

putationally more efficient bi-encoders.

Also, as an attempt to further improve the results, a data expansion technique was used to generate

more training examples. Given geographic passages from MS-MARCO that were not associated with

any queries, a pre-trained T5 model was used to generate a query for them. With this procedure, nine

thousand extra queries were created, to be used during model training.

After analysing the results of the previous experiments, a final bi-encoder model was fine-tuned,

combining the aforementioned techniques into a single pipeline. A cross-encoder was used within the

geographically-aware negative sampling procedure instead of BM25, so as to sample negative examples

following semantic similarity. Those negatives were used for the training of the bi-encoder, where the

same cross-encoder also acted as the teacher model for knowledge distillation.

As for the technologies used during this work, Python was used as the main programming language,

due to its popularity among the Machine Learning community. More concretely, open-source libraries

that deal with PyTorch models such as Huggingface Transformers [Wolf et al., 2020] and SentenceTrans-

formers [Reimers and Gurevych, 2019] were used to fine-tune the models.

2



1.2 Results and Contributions

Overall, the results showed improvements over both types of baseline models (i.e., bi-encoders

and cross-encoders), on the geographical domain, when considering fine-tuning with the proposed ap-

proaches. The main contributions of this work can be summarized as follows:

• The geographic subset of MS-MARCO was extracted and geoparsed.

• An expanded set of queries that are relevant to passages within MS-MARCO were generated and

geoparsed.

• A fine-tuning strategy which improves both cross-encoders and bi-encoders for the geographic

domain was proposed.

• A cross-architecture knowledge distillation method which further improved the bi-encoder models

was addressed.

Evaluating on the geographic subset of MS-MARCO, the best fine-tuned bi-encoder achieved a Mean

Reciprocal Rank at the 10th passage of 0.4454, and the best fine-tuned cross-encoder achieved 0.5103.

This is an improvement over the baseline models, which achieved 0.4019 and 0.4959, respectively.

For reproduction purposes, the code that supports the experiments described in this manuscript,

along with the geoparsed datasets (i.e., including the labels for geographic entities) and fine-tuned mod-

els, are publicly available in a GitHub repository1. Also, an article which covers part of the work here

presented, entitled Improving Neural Models for the Retrieval of Relevant Passages to Geographical

Queries, was accepted for presentation into the 29th International Conference on Advances in Geo-

graphic Information Systems (ACM SIGSPATIAL 2021).

1.3 Thesis Outline

The rest of this document is organized as follows: Chapter 2 presents the fundamental concepts

necessary for the understanding of this work. Chapter 3 covers related work on passage retrieval and

geographic question answering. Chapter 4 presents the data collection that was used, and the methods

for extracting its geographic subset. Chapter 5 introduces the retrieval models and the procedures

involved in their fine-tuning. Chapter 6 presents the experimental evaluation. Finally, Chapter 7 provides

concluding remarks, and discusses directions for future work.

1https://github.com/JMVCoelho/geo-passage-retrieval

3

https://github.com/JMVCoelho/geo-passage-retrieval


4



Chapter 2

Fundamental Concepts

This chapter will cover topics necessary for the understanding of this work, starting with textual

information representation, followed by deep learning models, neural language models such as BERT,

and ranking methods.

2.1 Representing Textual Information

To train Machine Learning models for Natural Language Processing (NLP) tasks, there is a need to

represent text as numerical vectors. The Vector Space Model [Salton et al., 1975] is an approach in

which words or documents are mapped to a V -dimensional space, where V is the number of tokens

in the vocabulary. In an one-hot word encoding style, each dimension would be assigned the value

0, except for the one corresponding to the word being represented, which would be assigned 1. A

similar approach can be used to represent documents. For a collection of documents, D = {d1, d2, ...},

the vocabulary V is the set of unique tokens among all documents. Therefore, each document in the

collection will be represented by a vector, di = (t1, t2, ..., t|V |). For each document di, tv = 0 if tv /∈ di or

tv = 1 if tv ∈ di.

Instead of having binary values, weights can be assigned to each term. This way, documents are

represented by di = (t1, t2, ..., t|V |), but tv = wv,i. One way of computing the weights is by using TF-IDF:

wv,i = tf(v, i)× idf(v) , (2.1)

where tf(v, i) is the term frequency of tv on document di, and idf(v) is the inverse document frequency

of term tv, given by:

idf(v) = log
|D|

|{di′ ∈ D|tv ∈ di′}|
. (2.2)

The normalized frequency, ntf(v, i), can be used instead of tf(v, i), by considering the maximum fre-

quency of all terms in di. It can be computed as follows:

ntf(v, i) =
tf(v, i)

maxv′∈V tf(v′, i)
. (2.3)

5



The motivation for this metric is that terms that appear very often in a document are important (except

for stop-words), but terms that appear in the document and are simultaneously rare among the collection

of documents are, in principle, context-related, and should also be more important.

To compute the similarity between two representations, r1 and r2, the cosine similarity can be used:

simcos(r1, r2) =
r1 · r2
||r1|| ||r2||

. (2.4)

It is important to note that the previous methods result in sparse representations, given the high

number of words in the vocabulary. Also, all words are considered to be independent. This means that

the cosine similarity between two different word representations is always 0, even if they are slightly

related. As an alternative, word embeddings can be considered [Smith, 2020]. The objective is to

represent words in dense, lower-dimension vectors. Documents can, for instance, be represented by

averaging the embeddings of constituting words.

Mikolov et al. [2013a] proposed Word2Vec, a method to generate word embeddings through a simple

neural network. The base idea is to train a neural network with a language modelling task and use the

learnt weights from the hidden layer as the embeddings. There are two approaches.

The first, CBOW [Mikolov et al., 2013a], tries to predict a word given its its surrounding neighbours

(i.e., the word’s context) as input. Formally, given the sequence t1, t2, ..., tN and the context size c, the

objective of the CBOW approach is to maximize:

1

N

N∑
n=1

log(P(tn|tn−c, ..., tn−1, tn+1, ..., tn+c)) . (2.5)

The second approach, named Skip-gram [Mikolov et al., 2013b], uses the target word as input, with

the optimization task being to try to find the word’s context. Formally, the objective of the Skip-gram

approach is to maximize:

1

N

N∑
n=1

∑
−c<=j<=c,j 6=0

log(P(tn+j |tn)) . (2.6)

The probability of predicting the output word tO given tI can be computed using the softmax function

as follows:

P(tO|tI) =
exp (r>tOrtI )∑|V |
i=1 exp (r>tirtI )

, (2.7)

where rtx is the representation of tx and |V | is the vocabulary size. Given that |V | can be very large,

other methods have been used to compute this probability, such as hierarchical softmax or negative

sampling [Mikolov et al., 2013a,b].

The major limitation of word embeddings is that words with multiple meanings will have only one

representation. To address this, contextual embeddings can be used, which are context-dependant rep-

resentations that capture the use of words across multiple scenarios [Liu et al., 2020]. Unlike traditional

word embedding techniques, contextual embeddings learn a vector that is a function of an input se-

6



quence that contains the target token. As a result, the same word may have different representations if

used in different sentences. To further explain how these can be generated, Section 2.2.2 will introduce

the Transformer architecture and Section 2.3 will cover the nowadays ubiquitous BERT model.

2.2 Deep Learning

Deep Learning is a subset of Machine Learning, concerned with the use of methods based on large

neural networks, leveraging the substantial amounts of available data. This section starts by describing

base architectures, namely the Perceptron and the Multi Layer Perceptron. Then, the Transformer is

introduced as a model that is better suited to deal with NLP tasks.

2.2.1 Multi Layer Perceptron

An artificial neuron is a mathematical function which conceptualizes a simplified brain cell. Its inputs

are weighted separately and fed to a nonlinear function to produce the output. The Perceptron [Rosen-

blatt, 1958] is an algorithm for supervised learning of binary classifiers, leveraging the aforementioned

idea and consisting of a single artificial neuron. Given an n-dimensional input vector x ∈ Rn, the output

of the Perceptron, y, is computed as follows:

y = h(w>x+ b) , (2.8)

where w ∈ Rn is the learnable weight vector and b is the bias. Originally, the activation function h is the

signal function, which returns 1 if the input is positive or -1 otherwise. To train the Perceptron, w can be

initialized randomly and updated following the equation:

w = w + µ(ŷ − y)x , (2.9)

where ŷ is the true label for the input vector being processed and µ is the learning rate. The main issue

with this model is that it can only classify linearly separable sets of vectors. However, that problem can

be solved by extending the Perceptron, connecting multiple layers of neurons with non-linear activation

functions.

Following the previous idea, a Multi Layer Perceptron, often also referred to as a feed-forward net-

work, comprises one input layer, at least one hidden layer, and one output layer. Each layer l contains

one or more neurons, n[l]. For a single hidden layer, let x[0] ∈ Rn[0]

be the input vector. The output, y, is

given by:

y = h[2](W [2]h[1](W [1]x[0] + b[1]) + b[2]) , (2.10)

where h[i],W [i] ∈ Rn[i−1]×n[i]

, and b[i] ∈ Rn[i]

are the activation function, weight matrix and bias vector

of the ith layer, respectively. Error functions (e.g., mean squared error or the cross-entropy) are used

to compare the expected value and the network output for a given input, and model training consists

7



in minimizing one such error (also named cost or loss) function. Gradient Descent is an optimization

technique that in order to minimize a given function, updates parameters by taking steps in the direction

of steepest descent in the gradient of the error function:

θt+1 = θt − µ∇Eθt . (2.11)

In the previous expression, t denotes the time-step, E is the error function subject to minimization with

respect to parameters θ, and µ is the learning rate.

Variations of gradient descent are applied alongside the back-propagation algorithm to train neural

networks such as Multi Layer Perceptrons. After a forward pass, this procedure computes the partial

derivatives of the cost function with respect to the different parameters, propagating this information

back through the network, resorting to the chain rule to compute the nested derivatives.

Beyond standard gradient descent, one popular first-order gradient-based optimizer is Adam [Kingma

and Ba, 2015]. Together with adaptive learning rates for each parameter, this method stores an expo-

nentially decaying average of past squared gradients (i.e., an estimate of the second raw moment of

the gradient), vt, and an exponentially decaying average of past gradients (i.e., an estimate of the first

moment of the gradient), mt. At each time-step t the gradient gt = ∇Eθt is computed, updating the

averages:

mt =
(1− β1)

∑t
i=1 β

t−i
1 gi

1− βt1
, (2.12)

vt =

√
(1− β2)

∑t
i=1 β

t−i
2 g2i

1− βt2
, (2.13)

and the parameter update rule is given by:

θt+1 = θt −
µmt

vt + ε
, (2.14)

where β1 and β2 are hyperparameters to account for how much of the previous gradients should be taken

in consideration when updating mt and vt. Overall, this approach yields small steps for parameters that

are updated very frequently, with larger ones for the others.

2.2.2 Transformer

Proposed by Vaswani et al. [2017], the Transformer neural network architecture follows an encoder-

decoder approach to represent inputs and generate outputs, aiming to solve sequence to sequence

tasks. The model is particularly suited to deal with NLP tasks, given that these involve processing

sequences of word tokens. Figure 2.1 depicts the overall structure. The encoder component is a stack

of encoders, and the decoder is a stack of decoders. Each encoder comprises an attention layer and a

feed-forward layer. Each decoder has the same layers, but between them there is an encoder-decoder

attention layer.

8



Encoderi

Encoderi-1

Encoder1

...

Input

Decoderi

Decoderi-1

Decoder1

...

Linear

Softmax

Output

Figure 2.1: General architecture of the Transformer.

Feed-Forward Step

Self-Attention Step

Encoder

Z

X

R

Figure 2.2: Components of a Transformer encoder.

First, the input sentence is processed, where each input token is mapped to an embedding space.

Since the tokens flow through the encoder (and decoder) simultaneously, there is no notion of word

order. As such, a positional encoding mechanism is used, adding a vector to each token representation.

The vectors follow a pattern that serves to approximate the position of each word in the sentence, relying

on the cyclic nature of the sine and cosine functions.

After processing, each input token is associated with a vector, xn. Stacking the n vectors yields a

matrix, X, which is the input for the first encoder. The matrix goes through an attention step, and its

output is fed to a feed-forward layer, as shown in Figure 2.2.

The objective of the attention step is to help the encoding process by allowing the model to check

other words of the sentence. This allows the model to understand which words are relevant to the one

that is being processed. One possible approach to achieve this is the scaled dot-product attention:

Z = Attention(Q,K, V ) = softmax

(
QK>√
dk

)
V . (2.15)

9



Figure 2.3: Feed-forward step of a Transformer encoder.

Feed-Forward Step

FFNN1 FFNN2 FFNNn...

Z

z1 znz2

r1 r2 rn

R

In the previous expression, Q, K and V are matrices obtained by multiplying X by three weight-matrices

trained during the training process, WQ, WK, and WV. As X is a stack of input vectors, Q, K, and V are

stacks of query, key, and value vectors, respectively. The square root of the key vectors dimensionality,

dk, is used as a normalizing factor for more stable gradients during training. Ultimately, after the attention

step, every input vector xn is associated with a vector zn.

In initial tests, the authors noticed that sometimes each zn, despite containing information of every

other encoding, could be biased towards xn. To solve this, they proposed a method where the attention

layer has multiple attention heads, termed multi-headed attention. This means that there will be multiple

sets of WQ, WK, and WV matrices. Each set is trained separately and thus, in the end of the training

process, each set will map the input to a different subspace. The computations are done using the scaled

dot-product attention, once for each attention head. The original Transformer uses 8 attention heads,

and thus after computing attention separately, there will be eight different Z matrices. To condense them

into a single one, they are concatenated and then multiplied by another weight matrix, WO, which is also

trained alongside the model. This way, the final Z matrix captures information from all attention heads.

The feed-forward step (Figure 2.3) comprises one feed-forward neural network which is applied in-

dependently to each zn. The input to the next encoder is the output from the feed-forward step.

For the decoding step, each decoder has an attention layer, followed by an encoder-decoder attention

layer and a feed-forward layer. The feed-forward layer works the same way as it does in the encoders, but

the attention layer has some differences, as it can only check earlier positions in the output sequence.

After the encoders process the input sequence, the output of the last encoder will be transformed into

a set of key and value vectors. The encoder-decoder attention layer works similarly to the multi-headed

attention, except that it creates the query vectors from the layer bellow it, whereas the key and value

vectors are the ones yielded by the transformation on the last encoder’s output. After the first decoding

step, the output of each step is fed to the first decoder in the next step. This process stops when a

symbol indicating completion is reached.

The output for each decoding step is fed to a fully connected neural network, mapping to a vector with

higher dimension – a logits vector. The dimensionality of the logits vector is the size of the vocabulary.

Each value on the vector is a score to a word on the vocabulary, thus softmaxing the vector yields a

probability value for each word. This way, the word with the higher probability is that step’s output.

10



2.3 Bidirectional Encoder Representations from Transformers

Bidirectional Encoder Representations from Transformers (BERT) is a neural language model that

achieved state-of-the-art performance on multiple tasks when it was published [Devlin et al., 2019], also

having been made publicly available. The available models were trained on books and Wikipedia data

on a semi-supervised fashion.

Recall the Transformer, which is comprised by an encoder stack and decoder stack of the same

size. BERT consists of an encoder stack, trained on language modeling objectives. BERTLARGE has 24

encoder layers, while BERTBASE has 12. Each encoder has an attention step and a feed-forward step.

As for input, the model can process single sentences or pairs of sentences, for a maximum of 512

tokens. For single sentences, a special token [CLS] is prepended to the sentence. Each token is then

represented by a regular word embedding. Like the Transformer, positional embeddings are applied.

For pairs of sentences, the [CLS] token is also prepended and a [SEP] token is used to separate the

sentences. Besides the word and positional embeddings, a segment embedding is added, which is a

vector that is learnt to indicate whether a sentence is part of the first or the second input.

To train the encoder stack, the authors proposed two tasks. The first, shown in Figure 2.4, was to

find the right word for some masked position of a sentence. As such, they employed a masked language

modeling objective, where 15% of the input is masked. Besides, some words are randomly replaced by

another, and the model is asked to find the right one for the position. The output associated with the

masked/replaced words is fed to a feed-forward network and then softmaxed, yielding probabilities for

words over the vocabulary that are used to predict the missing word. The second objective, depicted

in Figure 2.5, was to detect whether or not two sentences follow one another. The [SEP] token is used

to separate the sentences, and the output associated with the [CLS] token is fed to a classifier. While

training the classifier, BERT’s layers can either be frozen, or their weights can be tuned alongside the

classifier.

For this project, language models such as BERT will be used to generate a representation for either

a single-input sentence, or for the concatenation of two sentences with the [SEP] token. To obtain

this representations, techniques such as mean pooling (i.e., consider the average of the work token

embeddings) can be used, or the original idea of taking the vector associated with the [CLS] token as a

representation for the whole sequence can be considered.

Instead of fine-tuning BERT for a specific task, word-level embeddings can also be created from it.

From the Transformer architecture, each output cell is associated with an input token. Instead of taking

the [CLS] vector to represent the whole sentence, the vector associated with a specific word token

can be used as an embedding. Given the attention mechanisms, the representations take context into

account, hence being referred to as contextual embeddings.

11



[MASK] t3[CLS] t1 t4 ... t512t2

N 

Encoder

Encoder

FFNN with Softmax
Probability dsitribution

over vocabulary

Representation

Figure 2.4: Training BERT with a masked language modelling objective.

... [SEP][CLS] S11 S21 ... S2nS1n

N 

Encoder

Encoder

Representation

FFNN with Softmax
Probability of S2

following S1

Figure 2.5: Training BERT with a next sentence prediction task.

2.4 Ranking for Information Retrieval

The objective of passage retrieval is to identify the top-ranked passages from a background collection

that may answer a given question. Hence, this section will describe ranking functions such as BM25, its

extensions, and general ideas related to supervised learning to rank.

2.4.1 BM25

BM25 is a ranking function used to estimate the relevance of documents for a given query, based

on the probabilistic relevance framework [Robertson and Zaragoza, 2009]. Given a document d and a

query q with n tokens, (q1, ..., qn), the relevance score is computed as follows:

12



scoreBM25(q, d) =

n∑
i=1

idf(i)× tf(i, d)× (k1 + 1)

tf(i, d) + k1 ×
(

1− b+ b× |d|
avgdl

) , (2.16)

where b and k1 are hyperparameters for tuning, and avgld is the average length of documents in the

collection. Section 2.1 already presents how to compute the values for term frequency (tf) and inverse

document frequency (idf).

Since textual data may be composed of several fields (e.g., documents from news collections may

be divided in headline and body), BM25F [Zaragoza et al., 2004] was proposed as an extension. The

authors argue that given the different length of the fields, computing the BM25 scores for each field

and combining them linearly raises problems, like not keeping the non-linear relationship between term

weights and term frequencies, difficulties in performing the field length normalization, and unstable idf

computation. To address these issues, the authors proposed an approach that weights term frequencies

accordingly to their field importance. Given the decomposition of a document in a set of fields, F , the

scoring method is given by:

t̃f(i, d) =
∑
z∈F

wz × tfz(i, d)(k1 + 1)

tfz(i, d) + k1 ×
(

1− bz + bz |d
z|

avgdlz

) , (2.17)

where wz is the weight associated with field z. The remaining terms with superscript z maintain their

previous definition, now over the field z instead of the full document. The field-level term frequencies are

then used to compute the ranking score:

scoreBM25F(q, d) =

n∑
i=1

idf(i)× t̃f(i, d) . (2.18)

BM25+ [Lv and Zhai, 2011] is another extension, addressing the fact that the term-frequency normal-

ization by document length is not lower-bounded properly, which may over-penalize large documents.

The alternative scoring method is given by:

scoreBM25+(q, d) =

n∑
i=1

idf(i)×

 tf(i, d)× (k1 + 1)

tf(i, d) + k1 ×
(

1− b+ b× |d|
avgdl

) + δ

 . (2.19)

The only difference when compared to the original BM25 is the addition of an hyperparameter δ.

2.4.2 Learning To Rank

Learning to Rank (L2R) is a group of techniques that use Machine Learning to build ranking models,

e.g. for information retrieval applications. Given a set of n documents, D, and a query q, the goal is to

find out which d ∈ D are relevant to the query, and sort them by their relevance.

Pointwise Learning to Rank formulates the problem as a classification or regression task. Let ŷ(q, di)

be the graded relevance of di with respect to query q and f the learnt function. The objective is to

minimize loss functions such as the Mean Squared Error:

13



Lmse =
1

n

n∑
i=1

(f(q, di)− ŷ(q, di))
2 . (2.20)

Another approach, Pairwise Learning to Rank, takes pairs of documents as input, learning whether or

not one is more relevant than the other. For example, RankSVM [Joachims, 2002] is a ranking algorithm

based on Support Vector Machines, minimizing functions such as the Hinge Loss:

Lhinge =
∑

ŷ(q,di)>ŷ(q,dj)

max (0, 1− (f(q, di)− f(q, dj))) . (2.21)

One last technique is Listwise Learning to Rank, where the objective is to directly optimize ranking

metrics such as the Mean Average Precision or the Normalized Discounted Commutative Gain. For

instance, once the ranking function f is learnt, let there be a list of documents ordered by it for a given

query. The Mean Average Precision (MAP) is computed as follows:

MAP =

∑
q∈Q AP(q)

|Q|
, (2.22)

AP(q) =

∑n
i=1 P@i× R(i)

n∗q
, (2.23)

where Q is the set of all queries, n∗q is the number of ground-truth relevant documents for query q and

R(i) is a function that returns 1 if the document at rank i is relevant to q and 0 otherwise. P@i is the

precision at the ith returned document, i.e., the number of relevant documents on the first i results

divided by i. Functions such as the MAP are not differentiable, since they depend on the ranked position

of the documents. As such, gradient based optimizers cannot be used directly. Multiple methods have

been proposed to solve this, under the setting of listwise ranking. For instance, RankGP [Yeh et al.,

2012] aims to optimize the MAP resorting to genetic algorithms instead of gradient based optimizers, by

using MAP as the fitness function.

2.5 Overview

This chapter reviewed fundamental concepts for the understanding of this work, namely the repre-

sentation of textual information, starting with the classic approaches and motivating the most recent

contextual embeddings. Deep learning was also addressed, by introducing the Multi Layer Perceptron,

and the Transformer, an architecture which is more suitable to deal with textual data. Transformer-based

neural language models, such as BERT, were also discussed. Finally, ranking functions such as BM25

and general ideas related to supervised lerning to rank were covered.

14



Chapter 3

Related Work

This chapter will explore previous work on passage retrieval in general, followed by an analysis on

specific methods to deal with questions including geographical entities.

3.1 Passage Retrieval

First stage ranking and passage re-ranking are the two main tasks for passage retrieval. The former

aims to select the top-k most relevant passages from the whole collection given a query, whereas the

latter re-ranks the top-k passages for a query. Recently, Lin et al. [2020] released a survey which covers

recent methods for text ranking with neural approaches. As a note, some of the methods to be described

were originally proposed for document retrieval, instead of passage retrieval. The main difference relies

on the length of documents, which are larger than passages. For representation simplicity, all method

explanations will be adapted for passage retrieval.

3.1.1 Ranking with Cross-Encoders

Cross-encoders are encoder stacks that receive concatenated pairs of sentences as input (Figure

3.1). Multiple approaches have been proposed to re-rank passages using cross-encoders, based on

pre-trained language models. For instance, Nogueira and Cho [2019] used BERT as a re-ranker, based

on this idea. Their objective was, given a query q and a passage p, predict a relevance score, score(q, p).

To achieve this, the query and passage are concatenated, and the relevant tokens are added ([CLS]

and [SEP]). The representation of the [CLS] token is fed to a single layer neural network with the cross-

entropy loss:

Lcrossentropy = −
∑
p∈P+

q

log(score(q, p))−
∑
p∈Pq

−

log(1− score(q, p)) , (3.1)

where P+
q and P−q are the sets of positive and negative passages for query q, respectively, provided

within the same training batch.

15



... [SEP][CLS] q1 p1 ... pjqi

N 

Representation Linear Layer Similarity score

Figure 3.1: Cross-encoder as a stack of N encoders.

Han et al. [2020] followed a similar approach, but used TF-Ranking [Pasumarthi et al., 2019] models

instead of the single layer neural network. They tested with point-wise, pair-wise and list-wise learning

to rank models, on top of the [CLS] representation, as available within the TF-Ranking library. Also,

besides BERT, two more language models were used. The objective of these models is to try to reduce

BERT’s number of parameters.

RoBERTa [Liu et al., 2019] uses BERT’s pre-training masked language model, adopting a dynamic

masking strategy which generates a different masking patterns for every sequence. The next-sentence

prediction objective was also removed. Moreover, the authors argued that BERT is undertrained and, as

such, RoBERTa is trained on a larger dataset and during more time when compared to BERT.

ELECTRA [Clark et al., 2020] adopts instead a slightly different pre-training model that aims to detect

replaced tokens in the input sequence. One Transformer (generator) will receive as input a masked

sentence and predict the original tokens for the masked ones. A second Transformer (discriminator) will

receive the sentence with predictions, and infer whether each token is original or was replaced by the

generator.

Scores obtained by cross-encoders using the different language models, i.e. BERT, RoBERTa and

ELECTRA, were ensembled on 5 runs each with a list-wise loss. For each run i ∈ (1, 2, ..., k) and query

q, the passages were ranked based on the prediction scores, obtaining the position Pos(i, q, p) for each

passage p. Then, a new score was calculated based on the average reciprocal rank of k runs:

scoreemsemble(q, p) =
1

k

k∑
i=1

1

Pos(i, q, p)
. (3.2)

3.1.2 Ranking with Bi-Encoders

In contrast with cross-encoders, bi-encoders generate two separate representations for a pair of

sentences (Figure 3.2). While models based on them can be used for re-ranking, they are mostly

used for first stage retrieval, given that the individual representations can be indexed through methods

16



...[CLS] q1 qi

N 

Query
Representation

...[CLS] p1 pj

N 

Passage
Representation

Cosine Similarity Similarity score

Figure 3.2: Bi-encoder as two stacks of N encoders.

supporting the fast execution of maximum inner product searches, such as FAISS [Johnson et al., 2017].

Reimers and Gurevych [2019] argue that passing concatenations of sentences through large net-

works is computationally expensive, which makes it unsuitable for semantic similarity tasks over large

collections. As such, they proposed SBERT, which leverages bi-encoders to generate representations

for queries and passages independently. This way, all passage representations can be pre-computed.

The architecture comprises two BERT encoders (with shared weights, as the task in hand is seman-

tic similarity) followed by a pooling layer. Three pooling strategies were tested: Using the [CLS] token

representation, Mean Pooling and Max Pooling of the word token embeddings. The objective func-

tion depends on the task. For classification, the representations for query, Eq, passage, Ep, and their

element-wise difference, |Eq − Ep|, are concatenated. This representation is fed to a softmax layer,

trained using the cross-entropy loss.

For regression, the cosine similarity between Eq and Ep is computed, using the mean-squared error

loss as the objective. A triplet-based objective was also considered, using the triplet-loss with a hinge

formulation:

Ltriplet = max{0, sim(q, p−)− sim(q, p+) + ε} (3.3)

where sim is a similarity function, and the objective is to score the positive passage at least ε higher than

the negative one. The authors choice between the three structures depended on the data and the task,

which means that no direct comparison was made between the three.

ColBERT [Khattab and Zaharia, 2020] follows a similar structure, where queries and passages are

independently encoded using BERT. The representation for a given query q is represented by Eq. It

contains a vector Eqi for each token qi in q. The same applies for passages, Ep. The query encoder

starts by preprending (after [CLS]) a special token [Q], and a query augmentation mechanism is applied

17



by appending [MASK] tokens until the query reaches the maximum number of tokens, as the authors

argue that this will allow BERT to produce query-based embeddings at the positions of the masks. BERT

is then used to encode the tokenized version of the query, yielding the representations for each token,

which are fed to a linear layer to reduce the dimensions. Finally, the vectors are normalized so that the

dot product can be used as cosine similarity. Encoding passages works similarly, prepending a [D] token

instead of [Q] and filtering out tokens corresponding to punctuation.

This model also proposes a computationally efficient, yet powerful, late interaction mechanism to

compute the similarity between a query and a passage, as a sum of maximum similarity (MaxSim)

scores:

simcolbert(q, p) =
∑
i∈|Eq|

max
j∈|Ep|

EqiE
>
pj . (3.4)

This operation conveys a pruning-friendly behaviour, allowing for top-k retrieval by using fast vector simi-

larity data structures, and applying MaxSim between the query embedding and all passage embeddings

across the full collection.

The top-k retrieval process is divided in two stages. First, given a query representation Eq, k′ pas-

sages will be retrieved for each token inEq (i.e., queries are scored against the individual token represen-

tations), producing |Eq| × k′ results. Then, from those, the unique ones will be re-ranked, exhaustively

scoring each passage with respect to the whole query.

During training, the BERT encoders are fine-tuned, while the linear layer’s parameters and [Q]/[D]

markers embeddings are trained from scratch. Using triplets (q, p+, p−), ColBERT produces a score for

each passage individually, with pairwise softmax cross-entropy as the loss function over the scores of

p+ and p−:

L = − log

(
exp (simcolbert(q, p

+))

exp (simcolbert(q, p+)) + exp (simcolbert(q, p−))

)
. (3.5)

Wrzalik and Krechel [2020] proposed CoRT, to serve as a complementary ranker for term-based

retrievers such as BM25. The queries and passages are encoded using ALBERT [Lan et al., 2020],

which is a language model that aims to reduce BERT’s memory complexity by using the same weights

in all the encoder layers. The representations are then mapped to the desired dimension by a linear

layer with a tanh activation. The angular cosine similarity is used to compute relevance scores between

queries and passages:

simangcos(q, p) = 1− arccos(simcos(q, p))

π
. (3.6)

The model is trained using a triplet loss (Equation 3.3). To generate the training triples, negatives

are sampled from BM25 rankings. As the model is a complement to term-based retrievers, a zipping

procedure is proposed. Let rCoRT = [a, b, c, d, ...] be the ranked passage list returned by CoRT, and

rBM25 = [e, c, f, a, ...] the one returned by BM25. The result of zipping is [a, e, b, c, f, d, ...], by interleaving

the items from the two lists.

18



Ding et al. [2020] identified some issues on the training of bi-encoders, such as the large number of

unlabeled positives, which leads to an high probability of false negatives, and the discrepancy between

the training and inference steps, since during training the model optimized probabilities for positive pas-

sages in a small candidate set for each query, while during inference positive passages for each query

are identified from a collection with millions of candidates. Noting these limitations, they proposed Rock-

etQA, which was built on top of a bi-encoder using neural language models for building representations,

presenting three optimizations for the training.

First, cross-batch negatives works when training on multiple GPUs. Each GPU will be training on a

mini-batch with B instances, where each query is paired with a positive passage. Instead of sampling

additional negatives, each query can be further paired with B − 1 passages, corresponding to the posi-

tives of other queries. By sharing the representations among all GPUs, n(B − 1) passages can be used

as negatives, where n is the number of GPUs.

Second, denoised negative sampling was used, since the authors argued that cross-batch negatives

can increase the number of easy negatives, while hard negatives are more important to train a bi-

encoder. As such, a cross-encoder measuring similarity between queries and passages is trained over

the original data. The passages predicted as positive with high scores are discarded, and hard negatives

are sampled from the remaining top-k. The motivation behind this was that cross-encoders are more

powerful when it comes to capturing two-way semantic similarity, when compared to a bi-encoder, but

they are not efficient in inference due to the large number of candidates.

Finally, they augmented the data using the cross-encoder to annotate unlabeled questions. Over-

all, the motivation was to achieve a trade-off between the temporal efficiency of bi-encoders and the

higher performance of cross-encoders. Employing these optimizations on the training of a bi-encoder,

RocketQA’s results are currently state-of-the art on the MS-MARCO [Campos et al., 2016] dataset.

Thakur et al. [2020] followed a similar approach to extend the previously mentioned SBERT model,

proposing AugSBERT. A pre-trained cross-encoder is used to label sampled unlabeled pairs, which are

then merged with the already labeled pairs. The new pairs to be labeled with the cross-encoder are

sampled using different techniques, such as (i) random sampling, (ii) kernel density estimation (KDE),

which aims to get a similar label distribution to the set of already labeled pairs, (iii) BM25 sampling,

where the top-k passages returned by BM25 for each query are selected, and (iv) semantic search

sampling which uses a trained SBERT model on the already labeled set to retrieve the top-k most

similar sentences. AugSBERT outperformed the previous SBERT in all tested tasks. The authors noted

that the sampling strategy was crucial for the improvement, with BM25 and KDE sampling producing the

best results, while random sampling decreases the performance when compared to the original SBERT.

3.1.3 Expansion Models

Expansion models aim to expand the representations with new terms so that vocabulary mismatch

(i.e., the difference between query terms and those used in the document) is attenuated. More specif-

ically, Nogueira et al. [2019] proposed a document expansion model, doc2query, which trains a Trans-

19



former to predict possible queries that an input document might answer. The documents are expanded

by appending 10 sampled predicted queries to them. The expanded documents can then be indexed

for retrieval. The example by the authors used BM25 to extract the top-1000 passages for each query,

followed by re-ranking with BERT. In subsequent work, Nogueira [2019] further revised this method, re-

placing the Transformer as the expansion model by T5 [Raffel et al., 2020], i.e., a multitask model that

addresses problems as sequence-to-sequence tasks, and which has achieved very strong results on a

variety of NLP tasks.

T5’s architecture is based on the Transformer, previously explained on Section 2.2.1, with small dif-

ferences such as a different positional encoder. Each task is converted to a text-to-text format, i.e., a

textual prefix is added to the actual query. For instance, “translate English to German: query ” can be

used as a prefix to a machine translation task, where the model will output the translated query. Classifi-

cation or ordinal regression tasks can also be considered, with the output being the string representation

of the target value. As for training, it uses a masked language model similar to BERT. Tokens are re-

placed by a consecutive span of corrupted tokens, where consecutive words are replaced by one single

token. The objective is to output the original sentence, i.e., correctly identify the corrupted tokens. Other

approaches were considered, such as next-word prediction and deshuffling. The authors also noted that

for multiple downstream tasks, fine tuning all pre-trained parameters outperformed freezing layers.

Besides expansion, Nogueira et al. [2020] also proposed another usage for T5, adapting it directly

to the task of document ranking, by performing sequence to sequence classification. For this task, the

input prompt is “Query: q Document: d Relevant:”. The model is fine-tuned to classify the sequences as

true or false, depending on whether document d is relevant to query q. Documents are ranked based

on the probabilities assigned to the true token, which are obtained by applying softmax to true and false

token logits.

3.1.4 Kernel Models

Xiong et al. [2017] proposed K-NRM which is a kernel based neural ranking model. Given the word-

wise representation of queries and passages (e.g., through regular word embeddings), a matrix M , is

created where each element Mi,j is the cosine similarity of the ith query term, qi and the jth passage

term, pj :

Mi,j = simcos(rqi , rpj ) . (3.7)

In the previous expression, rqi is the representation of the ith query term, and rdj is the representation

of the jth passage term.

Query-passage ranking features φ(M) are then extracted from the matrix using n radial basis function

kernels, K, which compute the distribution of pair similarities around them:

φ(M) =

n∑
i=1

logK(Mi) , (3.8)

K(Mi) = {K1(Mi), ...,Kn(Mi)} , (3.9)

20



Kk(Mi) =
∑
j

exp

(
− (Mij − µk)

2σ2
k

)
. (3.10)

Features φ(M) are fed to a linear layer with a tanh activation. For training of the parameters, a triplet

loss is used (Equation 3.3).

More recently, Hofstätter et al. [2019] proposed a Transformer-Kernel (TK) approach, based on

BERT-based ranking models and K-NRM. This approach aims to balance efficiency, effectiveness, and

interpretability. Initial representations of queries and passages pass independently through Transformer

layers, producing contextual embeddings. Query and passage encoders have shared learnable weights.

TK then creates an interaction matrix M similar to K-NRM (Equation 3.7). The same RBF Kernel fea-

ture extraction is used, but unlike K-NRM, this does not enforce exact term matching, as contextualized

representations do not produce exact matches. The pooling process in TK is extended by generating

passage length (plen) normalized features:

φlen(M) =

n∑
i=1

K(Mi)

plen
. (3.11)

Both the log-normalized φ(M) and passage length normalized φlen(M) features are fed to a linear

layer to produce scalars. The final score is a weighted sum of both.

It is important to notice that this architecture shares a problem with the original Transformer, which

is the quadratic memory complexity with respect to the input sequence length, due to the self attention

mechanism (Equation 2.15). The Conformer-Kernel (CK) [Mitra et al., 2020] tackles this issue by using

a Separable Self Attention (SSA) mechanism:

SSA(Q,K, V ) = softmax(Q)× softmax(K>)V . (3.12)

A grouped convolution (i.e., using multiple different convolution filters over the same input, concatenating

the results) is also applied before the separable self-attention. Query-term independence is a property

that assumes that passages can be scored independently with respect to each query term, accumulating

the scores. This assumption is present in CK, achieved by only generating contextual representations for

the passages, and by applying the K-NRM’s Kernel-Pooling based aggregation to each query term inde-

pendently. So that explicit explicit term matching can be enforced, the term-passage score is computed

as follows:

score(t, p) = w1BN(scorelatent(t, p)) + w2BN(scoreexplicit(t, p)) + b , (3.13)

where w1, w2 and b are learnable parameters, scorelatent(t, p) is computed using CK, and BN is the

BatchNorm operation, given by:

BN(x) =
x− E[x]√

Var[x]
. (3.14)

21



In the previous expression, E is the expected value and Var the variance. A model based on BM25 is

used to compute scoreexplicit(t, p):

scoreexplicit(t, p) = idf(t)
BS(tf(t, p))

BS(tf(t, p)) + ReLU(w BS(|p|) + b) + ε
, (3.15)

where, w and b are learnable parameters and BS is the batch scale operation:

BS(x) =
x

E[x] + ε
. (3.16)

3.2 Geographical Retrieval Methods

The methods for passage retrieval discussed in the previous sections are designed for general do-

main questions. As such, some methods to deal with the geographical, mostly focused on their proper-

ties and how to represent them, are now considered.

Previous studies have also addressed the difficulties and inherent problems of Geographic Infor-

mation Retrieval (GIR) [Purves et al., 2018] and Geographic Question Answering (GeoQA) [Mai et al.,

2021]. The types of questions GeoQA systems aim to answer are very diverse, and different types of

questions need data from different sources (e.g., instead of retrieving answers from document collec-

tions, several GeoQA studies have instead relied on structured knowledge bases describing geo-spatial

information [Haas and Riezler, 2016, Lawrence and Riezler, 2016, Punjani et al., 2018]). Also, the

vagueness of some geographic concepts increases the difficulty of properly answering the questions

formulated by users.

Some systems have combined textual representation models with structured geographic information,

so as to try to overcome some of the issues posed by geo-spatial questions. This includes seminal GIR

research based on heuristics [Purves et al., 2018, Mandl et al., 2008, Cardoso et al., 2005], combining

BM25 ranking together with geo-spatial criteria derived from gazetteers or general knowledge bases, and

also more recent GIR/GeoQA methods based on machine learning and, more recently, neural networks.

For example, Contractor et al. [2020] developed a spatial-reasoner which aims to answer questions

where a geographical entity is the answer. This approach works by scoring a list of candidate entities

against a query. To achieve that, it uses a distance aware query encoder, i.e., contextual representa-

tions of query tokens are extended with information regarding a candidate entity, c. Each query token

representation is appended with an one-hot encoding representing IOB tags (Inside, Outside and Be-

ginning labels, identifying spatial tokens). Then, the spatial tokens (the ones labeled with B and I) are

also concatenated with the Manhattan Distance from c to the location mention lmk, while the remaining

tokens are concatenated with 0 (dci ). This whole concatenation is then fed to a bi-directional GRU to

generate the encodings.

Another element of the architecture is a distance-reasoning layer, that aims to learn a model that can

infer both whether a location mentioned is needed to be considered for answering, and how it needs to

22



be used for answering. For each lm in a query, the model outputs a distance weight wk that captures

contributions between lmk and c, under the constraints present in the query (e.g. “near” or “far”, among

others). This is achieved by blocks of feed-forward layers with ReLU activation applied at each position

of the representation. The output of the final layer, o, is used to compute the distance-weight vector w

for a question:

w = tanh(o� B) , (3.17)

where B is a binary vector assigning 1 to the positions originally assigned with the B tag, and � stands

for the Hadamard product (element-wise multiplication). Finally, the score scoreL for a candidate entity c

is given by:

scoreL = wdc , (3.18)

where dc is the vector of Manhattan Distances between c and all location mentions used in the query

encoder.

Another network that focus only on textual properties is also used, through a bi-encoder, combining

entity embeddings and question representations to generate a relevance score, scoreT . The two scores

are combined in an overall score, according to the following expression:

score = α sigmoid(wT scoreT )tanh(wL scoreL) + β sigmoid(wT scoreT ) . (3.19)

The parameters wT and wL are learnable weights, while α and β are the combination weights. The

model is trained using max-margin loss.

The work by Li et al. [2020] uses semantic encoding to capture the information in geospatial ques-

tions, i.e., the words in the questions are mapped to a sequence of predefined semantic elements,

such as PlaceName, Activity, PlaceType, among others, also including relations such as SpatialRela-

tionship and LogicRelationship. The authors proposed a neural tagging approach, which outperformed

rule-based tagging pipelines on their evaluation. The method starts by generating embeddings for the

sentences, followed by a sequence labelling model to capture inter-word dependencies and sentence

structure. The architecture with the best results uses BERT, fine tuning all layers during training. To

further enrich this representation, a semantic graph (GSG) was proposed, since semantic encoding by

itself does not portrait logical or semantical dependencies between terms. The nodes of the graph are

the aforementioned tagged semantic elements, and the edges are labeled with semantic relations be-

tween source and target. As a practical example for the usage of these representations, the authors

proposed a method to translate them into GeoSPARQL queries, which are used to query RDF-encoded

knowledge bases in the form of (subject, predicate, object) triples.

Xu et al. [2020] also proposed a parsing method to identify the syntactic and semantic structure of

geographic questions, to extract the intent of those questions and the descriptions and criteria of the

intent. First, part-of-speech tagging is used, focusing on WH-words (e.g. “what” or “when”, among

others), helping to differentiate each part of the sentence in semantic types. A pre-trained named entity

23



recognition model is applied to identify toponyms and place types. Relations between the semantic

types are captured using a constituency parser. Verbs are classified as activities or situations using

embeddings from neural language models. The result of this parsing pipeline is combined with the

types of question words (i.e., the previously identified WH-words) to divide the geographic question in

its intent and criteria, resorting to depth first searches over the parsing tree and/or heuristics for any

ambiguous cases. The authors use this process to analyse multiple corpora, identifying the semantic

type distributions.

Hamzei et al. [2021] investigated human answers to where-questions, presenting templates to char-

acterize and replicate their structure. They follow machine learning approaches for pattern learning,

introducing an encoding of questions and answers based on the type, scale and prominence (TSP) of

their toponyms. The authors define type as a reference to a group of places with similar characteristics,

scale as the hierarchical organization concerning size and relations between places, and prominence as

a measure of how well-known a place is. These three items are used to characterize descriptions and

capture relationships among places, i.e., relate toponyms in the questions to those in their answers.

The encoding process starts by modeling the questions and respective answer as sequence of to-

ponyms. Then, the toponyms are encoded into type, scale and prominence. To achieve this, the to-

ponyms are identified by a pre-trained Named Entity Recogniton model. Gazeteers (i.e., index of to-

ponyms) are used to extract attributes for the identified toponyms, which are then used for the TSP

encoding. A TSP encoding of a question and its answer can be seen as a generic form. As such, the

authors compared questions to answers through type, scale and place distributions, deriving patterns

through rule mining algorithms. The generic forms are used in prediction models, that given a question’s

generic form, try to predict the answer generic form.

The authors evaluated both the rule mining and the predictive systems on MS-MARCO [Campos

et al., 2016]. They identified that the scale in answers is, in general, one level coarser than in the

questions. More specifically, questions often feature city-level toponyms, while answers contain country-

level ones. The extracted rules were very representative, for instance, the most frequent rule can be

applied to 1277 question-answer pairs.

Martins and Calado [2010] proposed a learning to rank approach for geographical information re-

trieval. The data used consisted on queries and a collection of documents divided in headline and body.

Given a query-document pair, textual features were extracted, including term frequencies, inverse

document frequencies, document length, TF-IDF scores, and BM25 scores. These features were com-

puted for the headline only and for the concatenation of the headline and the document body.

Geographical features were also considered. For this, a tool to annotate the name places and scopes

with their coordinates and bounding boxes was used. Multiple features were then computed, including

the area of the geographic scope of the query and the document, the area and degree of overlap

between the geographic scopes of the query and the document, and the normalized distance between

the centroid point for the geographic scopes of the query and the document. Averaged features were also

considered, combining geographical and textual features. The features were used to train a SVMmap

model [Yue et al., 2007], a listwise L2R approach which aims to optimize the MAP (Equation 2.22).

24



As for results, the authors noted that using both textual and geographical features yielded the best

results in terms of MAP. Using only the geographical features resulted in a poor performance, while using

only textual features was a competitive baseline.

Wang et al. [2021a] worked on the subject of temporal question answering, proposing a tailored ap-

proach for document re-ranking where the queries contain temporal entities. While it does not address

geographic content, the work focuses on distance between the temporal entities, which could be directly

adapted to the geographical domain. The proposed method starts by retrieving the top-100 documents

for each query using BM25. Then, those documents are re-ranked by a time aware re-ranking module.

This module starts by extracting the time scope of the query, an interval T (Q) = (tQstart, t
Q
end), using

SUTime. If a query contains more than one interval, only the first one is considered. Then, for each

retrieved document, two scores are computed. Besides contrasting the time scope against the temporal

information within a document, this approach also takes into account the document publication times-

tamp, considering the intuition that documents published close to the time period associated with the

question have an higher probability of being relevant.

To compute the scores associated with each document’s temporal content with respect to a query,

a list of temporal intervals is extracted from each document, T (D) = (T1(D), T2(D), ...). Each interval

consists of a start time and an end time. Hence, two lists can be considered, one for the start times,

T s(D), and one for the end times, T e(D). Then, two probability density functions are generated through

kernel density estimation, one for each list. The probabilities of the query’s start and end time given the

lists are computed following the estimations, taking the average of both for a score, s1.

The scores associated with the document’s publication date are computed in a similar fashion. The

probability of generating a time scope given a timestamp is given by a exponentially decaying function

of the distance between the publication date and the time scope. This probability is again considered as

a score, s2.

The two scores (s1 and s2) are normalized and averaged for a final temporal score, and then the

documents are re-ranked by linearly combining the BM25 scores and the temporal scores. The collection

of documents and queries with temporal entities used by the authors are publicly available.

3.3 Overview

This chapter covered related work both on open-domain passage retrieval and geographic informa-

tion retrieval. For passage retrieval, the cross-encoder and bi-encoder architectures were discussed,

focusing on their benefits and disadvantages towards one another. Multiple studies focusing on this two

architectures were revised, detailing their training, and usage within a retrieval setup. Regarding geo-

graphic retrieval methods, studies that combine the geographic information with the textual representa-

tions were addressed. Also, works that aim to characterize the properties of the geographic questions

and answers were covered.

25



26



Chapter 4

A Dataset for Geographic Question

Answering

This chapter will introduce the dataset used in the scope of this work. First, a geoparsing procedure

will be covered, detailing the process of obtaining the geographic coordinates for entities within an input

sentence. Then, MS-MARCO, a large scale benchmark dataset, will be characterized, and the extraction

of its geographic subset through the aforementioned geoparsing procedure will be addressed. The

properties of this geographic subset will also be covered.

4.1 Geoparsing Textual Data

Since one of the objectives of this work was to study the impact of geographic distances in the

re-ranking of passages to geo-spatial questions, the association of geo-spatial coordinates to place-

names within a collection of queries and passages was necessary. As such, a tool to recognize and

assign coordinates to geographic entities (i.e., a geoparser) was needed. Recent work on this subject

relies on the usage of deep neural networks for directly predicting geo-spatial coordinates from textual

representations [Cardoso et al., 2019, Kulkarni et al., 2020], although for the specific purposes of this

work, the chosen method should be very efficient, so that it could be used to process large collections,

including all the queries and the associated top-1000 passages.

Mordecai [Halterman, 2017], an open source tool which is able to resolve entities to geographic coor-

dinates was chosen for this purpose. This system starts by using a pre-trained named entity recognition

model to identify place-names in the input texts. Then, a large coverage gazetteer (i.e., a toponym index)

is used to find the potential coordinates of the recognized place-names, by matching the place-name

strings against candidate gazetteer entries. Neural networks, trained on annotated English data, are

used to infer the correct country and gazetteer entry for each place name, combining heuristics based

on prominence (i.e., prefer capital cities and important places) and contextual similarity.

This tool was used to identify place-names, and for mapping place-names to coordinates, in both

queries and passages. To parse queries in the training data, and since queries are usually small, their

27



Query:

house for rent in hickory creek texas

Passage:

The average square feet of the homes in Hickory Creek is 1,913 sqft. There are currently 3

homes for lease in Hickory Creek subdivision. The average rent in Hickory Creek is $ 1,767

at an average price of 1 per square foot.

Figure 4.1: A query and its relevant passage, from MS-MARCO development set.

{’word’: ’texas’,

’spans’: [{’start’: 32, ’end’: 37}],

’country_predicted’: ’USA’,

’geo’: {’admin1’: ’Texas’,

’lat’: ’31.25044’,

’lon’: ’-99.25061’,

’country_code3’: ’USA’,

’geonameid’: ’4736286’,

’place_name’: ’Texas’,

’feature_class’: ’A’,

’feature_code’: ’ADM1’}}

Figure 4.2: Mordecai output when processing the query house for rent in hickory creek texas without
concatenation.

{{’word’: ’hickory creek’,

’spans’: [{’start’: 18, ’end’: 31}],

’country_predicted’: ’USA’,

’geo’: {’admin1’: ’Texas’,

’lat’: ’33.12234’,

’lon’: ’-97.04306’,

’country_code3’: ’USA’,

’geonameid’: ’4829219’,

’place_name’: ’Hickory Creek’,

’feature_class’: ’P’,

’feature_code’: ’PPL’}},

{’word’: ’texas’,

’spans’: [{’start’: 32, ’end’: 37}],

’country_predicted’: ’USA’,

’geo’: {’admin1’: ’Texas’,

’lat’: ’31.25044’,

’lon’: ’-99.25061’,

’country_code3’: ’USA’,

’geonameid’: ’4736286’,

’place_name’: ’Texas’,

’feature_class’: ’A’,

’feature_code’: ’ADM1’}}}

Figure 4.3: Mordecai output when processing the query house for rent in hickory creek texas concate-
nated with the relevant passage.

concatenation with the relevant passage was used as input, so as to better contextualize the query and

minimize errors. However, only the entities contained within the length of the query were kept. A query

was considered to be geographic if at least one entity is mapped to coordinates. Passages were parsed

with no extra pre-processing.

28



As an example, consider the query and relevant passage pair in Figure 4.1. When parsing the query

alone, i.e., without the aforementioned concatenation with the relevant passage, the output includes

only the entity texas, as shown in Figure 4.2. Note that the entity hickory creek was not recognized by

Mordecai in this scenario for the query. However, in the passage, hickory creek is the only entity, and

Mordecai is able to identify it when parsing the passage alone. This causes a misalignment between

the identified entities in the query and the passage. To overcome this issue, when processing the

query, it is concatenated with the relevant passage, for contextualization. Figure 4.3 shows the output

with concatenation, and both texas and hickory creek were identified in the query. This process may

identify some entities that are only present in the passage, and assign it as a query entity, due to the

concatenation. To avoid this, the span of the words, present in the output, is used to consider only

query entities within its span. As for the remaining of the output, it provides useful information such as

administrative regions, geonames identifiers, and the geographical coordinates.

4.2 The MS-MARCO Dataset

MS-MARCO [Campos et al., 2016] is a large benchmark dataset that can be used for multiple retrieval

tasks. For passage retrieval, the available data comprises over one million queries from BING and eight

million passages, with human annotations concerning relevance judgements (i.e., most queries are

associated to one relevant passage). This dataset was used for all the experiments, due to being the

most well-known benchmark for passage retrieval.

Other authors [Hamzei et al., 2021] have studied the geographic contents of this dataset, identifying

a total of 12548 geographic question-answer pairs (under their particular definition), and 22307 different

place-names mentioned in these queries and passages. However, given the need of associating entities

to geographic queries, this work fully processed MS-MARCO with Mordecai, as described in the previous

section.

4.2.1 Geographical Subset of MS-MARCO

This dataset provides separate training and development sets, both with relevance judgements.

There is also an official test set, but the labels are undisclosed, and as such was not considered for

this work. The training set was parsed with Mordecai, identifying 27104 geo-spatial queries. From

those, only the 16833 queries with at least one relevant passage were considered. From the develop-

ment set, 292 queries were identified as geo-spatial (i.e., at least one entity resolved to coordinates by

Mordecai). A total of 292 random queries were also sampled from the training set so as to compose a

separate development set (i.e., given that only the development set of MS-MARCO is available publicly,

the data from this development set was used as the test set to evaluate the models, and a separate

development set for tuning hyper-parameters was constructed). The top-1000 passages retrieved with

BM25 for each query were also processed by Mordecai. Hence, the geo-spatial subset of MS-MARCO

is as follows:

29



Figure 4.4: Geo-spatial distribution for places within queries of the MS-MARCO development set.

Figure 4.5: Geo-spatial distribution for places within passages associated with queries of the MS-
MARCO development set.

• Training set: 16541 queries, together with the top-1000 passages as retrieved by BM25 for each

query;

• Validation set: 292 queries, together with the top-1000 passages as retrieved by BM25 for each

query;

• Test set: 292 queries, together with the top-1000 passages as retrieved by BM25 for each query.

Every query in each set has at least one relevant passage, and every passage associated with a

query was also processed by Mordecai. Ultimately, over one million geographic query-passage pairs

were used during model training.

The geographical coordinates of entities identified by Mordecai for queries in the development set

of MS-MARCO and their respective passages are depicted in Figures 4.4 and 4.5, respectively. As

expected, given the nature of the data, most of the entities are concentrated in North America and

Europe, although the data has a global geo-spatial distribution. As for the entities, Figure 4.6 shows that

most of the queries within this development set contain only one, the maximum being three. An analysis

30



1 2 3
Entities

0

50

100

150

200

Qu
er

ie
s

Figure 4.6: Number of entities per query in the geographic subset of MS-MARCO development set.

of the queries showed that most of these queries are factoids, i.e., informal needs about some place,

for instance why did italy attack ethiopia in 1935 and do us citizens need passports to enter and exit

canada. However, some queries include more complex relations between entities, which would perhaps

be more suitable for other retrieval systems based on external knowledge bases, for example how far is

it from colorado springs to la junta.

4.2.2 Data Expansion

Previous studies have, for instance, used models to augment passages’ textual information by con-

catenating generated queries [Nogueira, 2019]. Others, have used cross-encoders to label unassigned

passages in the textual collections [Thakur et al., 2020].

In this work, a T5 [Raffel et al., 2020] model was used to generate relevant queries to MSMARCO

passages that have no associated query, to be used during model training. First, 16541 geographical

passages (i.e., passages in which Mordecai was able to identify at least one entity) were sampled

randomly from the set of passages with no relevant queries. Then, a public T5 model1 (fine-tuned over

MSMARCO, SQUAD, CoQA and RACE for question generation) was used to generate ten queries for

each passage. From the ten queries, one with at least one geographic entity was selected. Some

passages were paired with queries that did not contain any geographic entities, and as such, were

discarded. Ultimately, the extended training set contains the original 16541 queries, and 9000 generated

ones.

1https://github.com/amontgomerie/question_generator

31

https://github.com/amontgomerie/question_generator


32



Chapter 5

Neural Models for Geographic

Passage Re-ranking

In this chapter, the techniques that were used during the training of the models are discussed. First,

the architecture of the models that were used is addressed, namely Transformer-based cross-encoders

and bi-encoders. Then, a re-ranking strategy which leverages the geographic distance between entities

in queries and passages is introduced. The fine-tuning of both bi-encoder and cross-encoder models

is discussed, focusing on hard negative sampling and batching methods. Finally, a cross-architecture

knowledge distillation technique is addressed.

5.1 The Bi-Encoder and Cross-Encoder Architectures

As discussed in Section 3.1, neural methods currently achieve state-of-the-art results for passage

retrieval. This work follows those baseline architectures, based on the usage of Transformer-based

neural language models, either following a bi-encoder or a cross-encoder architecture. For convenience,

their general architectures are again depicted in Figure 5.1.

Bi-encoders encode queries and passages independently. This allows the offline indexing of in-

dividual passage representations through methods that support the fast execution of maximum inner

product searches [Johnson et al., 2017]. Conversely, cross-encoders generate a representation for the

concatenation of a query and a passage, directly modelling the interactions between these two compo-

nents. These representations can be obtained through mean pooling of word token embeddings, or by

considering only the [CLS] token from a model like BERT [Devlin et al., 2019] or RoBERTa [Liu et al.,

2019]. The representation can then be used to predict a relevance score for the passage to the query,

for example by using a feed-forward layer with a sigmoid activation.

Usually, due to their superior computational performance, bi-encoders are used for full retrieval, i.e.,

to identify the top-k relevant passages from a large background collection. Cross-encoders are mostly

used for re-ranking a set of top-k passages, retrieved initially through an efficient first-stage method,

since they provide more accurate relevance estimates.

33



...[CLS] q1 qi

N 

Query
Representation

...[CLS] p1 pj

N 

Passage
Representation

Cosine Similarity Similarity score

... [SEP][CLS] q1 p1 ... pjqi

N 

Representation Linear Layer Similarity score

Figure 5.1: Architecture for bi-encoder (left) and cross-encoder (right) retrieval models.

5.2 Model Fine-tuning

This section starts by introducing a re-ranking strategy based on the geographical distance between

queries and passages. Then, a negative sampling strategy leveraging said distance is addressed, to be

used for fine-tuning of both bi-encoders and cross-encoders.

5.2.1 Geographical Re-ranking

Following the intuition that passages mentioning places that are geographically close to the places

mentioned within a query should, in principle, be more relevant, a re-ranking method which leverages

the distance between the set of toponyms in a query, Tq, and the set of toponyms in a passage, Tp, is

considered:

distance(Tq, Tp) = min
tq∈Tq,tp∈Tp

h(tq, tp) . (5.1)

In the previous equation, tq, tp are the toponyms in the sets Tq and Tp, and h(·) is the haversine distance,

given by:

h(x, y) = 2r arcsin

√
sin2

(
∆φ

2

)
+ cosφx cosφy sin2

(
∆λ

2

)
, (5.2)

where r is Earth’s radius, λx, φx and λy, φy are the geographical latitude and longitude of points x and

y, and ∆λ and ∆φ are their absolute differences.

As a motivation for the usage of this distance when ranking passages with respect to a query, con-

sider Figure 5.2, which shows the distribution of the distance between queries from the geo-spatial

validation set of MS-MARCO (outliers were removed for visualization purposes), and their relevant pas-

sage, top-25 BM25 passage, and top-50 BM25 passage. This shows that the relevant passage is more

likely to have a smaller distance to the query, when compared to other passage examples.

Given the previous analysis, a re-ranking setup leveraging this notion of distance was considered.

First, the top-1000 passages for each query are re-ranked by distance. Then, if distance is tied, the

BM25 scores can be considered. Results for this re-ranking, are shown in Table 6.1, and discussed later

in Chapter 6. In brief, this strategy slightly surpassed BM25 retrieval, which motivated its usage for hard

negative sampling.

34



Relevant Top 50 BM25 Top 100 BM25

0

500

1000

1500

2000
Di

st
an

ce
 (m

)

Figure 5.2: Distribution of distance between queries from MS-MARCO geographic subset and corre-
sponding relevant passages, top-25 BM25 passages, and top-100 BM25 passages.

5.2.2 Hard Negative Sampling and Batching

When building a batch for training, choosing the negative passages for a given query is a crucial

process. If the passages are sampled randomly, the similarity between the passages and query is likely

to be very low (i.e., easy negatives), not contributing to the learning process. Conversely, choosing the

passages that despite being negatives are the most similar to the query (hardest negatives), will make

the distance between the embeddings very small, which may lead to collapsed models [Wu et al., 2017].

Several authors have discussed the problem of performing negative sampling. For example, as

discussed in Section 3.1.2, RocketQA [Ding et al., 2020] uses a cross-encoder to predict relevancy,

sampling negative passages from the denoised top-k negatives with a higher score.

In this work, the use of a geographically-aware negative sampling procedure was considered. For

this, the previously introduced notion of distance, which corresponds to the minimum haversine distance

between the geo-spatial entities in a query and a passage, is used (Equation 5.1).

First, the top-25 passages for each query in the training set are obtained, either using BM25 for

lexical similarity, or using a cross-encoder, for semantic similarity. Then, to sample N hard negatives

for a query, the N passages in the top-25 list, with highest distance, are chosen. This way, passages

that are lexically or semantically similar to the query, yet geographically distant, are considered as hard

negatives. This procedure can also be seen as a denoising mechanism, since a passage is less likely

to be a false negative to a geographical query if it has an high geographical distance. An initial set of

tests was used to fine-tune the value of 25, and it should be noted that, for each query, only a smaller

set of sampled passages ends up being used (e.g., a total of 10 negative passages) in association to

each query.

When building batches, triples are first created by associating a query to its positive passage and a

negative passage, sampled as described above. Then, to maximize the effective training data, batch-

35



wise negative pairing is applied, by using the positive and negative passages of a given query as nega-

tives for the others. This way, for a batch of N triples, N ×N × 2 pairs can be extracted.

To avoid repeated pairs, there are no duplicate queries within a batch. However, following ideas

related to those addressed in other recent work [Hofstätter et al., 2021], similar queries are grouped

together in the same batch, since hard negative passages sampled for a given query are probably also

challenging for similar queries. To divide the queries in groups of N , a corpus with all queries is first

considered. Then, one query is sampled randomly. BM25 is used to compare all queries in the corpus

to the sampled one. The top N − 1 queries are extracted, building the first group. The N queries from

the first group are removed from the corpus, and the process is repeated until all queries are grouped.

The aforementioned procedure aims to balance easy-negatives and hard-negatives for the batch-wise

paring, since the similarity of the queries in the first groups will, in principle, be higher than the similarity

in the final groups.

5.2.3 Cross-Encoders

The cross-encoder that was considered for fine-tuning is built on top of ELECTRA [Clark et al., 2020],

and it was pre-trained on the full MS-MARCO dataset. The model is provided with the SentenceTrans-

formers library [Reimers and Gurevych, 2020]. Specifically, the model named ms-marco-electra-base

was used, which was the best MS-MARCO model from this library at the time of the first experiments.

Batches were built as described in the previous subsection, considering 4 different queries per batch.

This yields a total of 32 pairs being compared per batch (i.e., each of the 4 queries is matched to its

positive passage, to its hard negative passage, and to the passages from the other 3 queries). Gradients

were accumulated for 10 steps, and the standard binary cross-entropy was used as the loss function:

LBCE = −
∑
p∈P+

q

log(score(q, p))−
∑
p∈Pq

−

log(1− score(q, p)) . (5.3)

In the previous equation, P+
q , P−q are the sets of positive and negative passages for query q, respectively,

provided within the same training batch. To obtain the score(q, p), i.e, an estimate of the relevancy of

passage p to query q, the representation of the [CLS] token is fed to a linear layer with a sigmoid

activation function.

5.2.4 Bi-Encoders

The model to be fine-tuned as a bi-encoder for passage re-ranking is based on a distilled version

of RoBERTa [Liu et al., 2019]. It is also provided through the SentenceTransformers library, and pre-

trained on the whole MS-MARCO dataset [Reimers and Gurevych, 2020]. Specifically, the model named

msmarco-distilroberta-base-v2 was used, which was the best MS-MARCO bi-encoder within the

SentenceTransformers library, at the time of the first experiments.

The general setup of the previous section was kept the same when training bi-encoders. The only dif-

ference is on computing the relevance of passage p for query q, score(q, p). Contrary to cross-encoders,

36



the transformer model in bi-encoders receives a single sentence as input. As such, representations

are generated for queries and passages independently, through mean pooling of the token embeddings.

Within a batch, there are 4 queries and 8 passages (i.e., one positive and one hard negative passage

selected per query). Hence, a similarity matrix M4,8 can be built, where the value for Mi,j is given by the

cosine similarity between the representations of query i and passage j.

An inspection to the cosine similarity values allowed to note that their ranges and magnitudes were

such that they did not provide a good separation between positive and negative passages. Thus, the

values are normalized by first applying the softmax operation over the rows of the similarity matrix

independently. Then, the columns of the matrix are also processed through a similar approach. Both

values are summed, and the results are then divided by two, so that the final scores range from 0 to 1.

The scores are provided to a standard binary cross-entropy loss, during model training.

5.3 Knowledge Distillation

As previously stated, cross-encoders produce better relevance estimates due to processing the con-

catenation of a query and a passage, hence being able to better capture the interactions between the

two sentences. However, bi-encoders provide a computationally more efficient method for retrieval, since

the representations are computed independently for queries and passages (i.e., for cross-encoders, all

query-passage pairs need to be processed by the neural model).

As such, a knowledge distillation method is now addressed, in order to try to approximate the re-

sults achieved by bi-encoders to those of cross-encoders. Previous studies have addressed distillation

processes that go from larger models to smaller versions, for example by using the outputs of the large

model as targets [Jiao et al., 2020, Sanh et al., 2019]. This is, the larger version of the model can be

used to label the examples that the smaller model will use for training. However, when distilling from a

cross-encoder to a bi-encoder, trying to fit the cross-encoder’s outputs directly is not optimal, since the

range and magnitude of the cross-encoder scores (sigmoid of logits) differ from those of the bi-encoder

(cosine similarity of vector embeddings). Approaches for cross-architecture distillation have been at-

tempted, for example by optimizing a value that corresponds to the margin between scores [Hofstätter

et al., 2020].

The distillation process used for this work is based on the Spearman rank correlation coefficient,

which considers the ranked lists of scores instead of the scores themselves. Rank-based metrics are

not differentiable, which means that it is not possible to use gradient-based optimizers for model training

directly in this scenario. Nonetheless, methods for fully differentiable soft sorting and ranking have

already been explored in the literature, which allows for a differentiable implementation of the Spearman

rank correlation coefficient [Blondel et al., 2020]. Let X,Y be lists of ranks, mX ,mY their mean values,

and xi, yi their ith elements. The Spearman rank correlation coefficient can be computed as follows:

r(X,Y ) =
1
n

∑n
i=1 ((xi −mX)(yi −mY ))√(

1
n

∑n
i=1(xi −mX)2

) (
1
n

∑n
i=1(yi −mY )2

) . (5.4)

37



Cross-Encoder

queryi P1 P2 P8...

Bi-Encoder

queryi P1 P2 P8...

Soft Ranking

1 8 ... 2

8 1 ... 2

Pre-computed for all queries

P1 P2 ... P8
queryi 0.1 0.9 ... 0.8

Training

r(BEi
 , CEi)

BEi

Generate

similarity matrix CEi

Figure 5.3: Example of computing the Spearman rank correlation coefficient for a single query.

The cross-encoder scores for each pair that is used during training are pre-computed. During train-

ing, considering the same setup of the previous subsections, there are 4 lists of scores per batch (i.e.,

4 different queries), containing the scores for each of the 8 passages. The Spearman rank correlation

coefficient (r) is computed between the ranked lists of cross-encoder scores (CE) and the scores of the

model under training (BE). Figure 5.3 shows an example of computing this score for a single pair of lists

during training. Then, the average of the 4 pairs of lists is then considered and, to use this value as a

loss, a transformation is applied:

LSRC =
−
(∑4

i=1 r(BEi,CEi)
)

+ 1

2
. (5.5)

This loss is combined with the binary cross-entropy:

L = LSRC + LBCE . (5.6)

5.4 Overview

In this chapter, the techniques that were used for model fine-tuning were introduced. First, a no-

tion of distance between queries and passages was covered, and its usage for passage re-ranking was

motivated. Then, the training setups were addressed, for both cross-encoder and bi-encoder archi-

tectures, focusing on negative sampling and batching methods. Finally, a cross-architecture distillation

method leveraging a fully-differentiable approximation to the Spearman’s rank correlation coefficient was

proposed.

38



Chapter 6

Experimental Evaluation

In this chapter, the experimental setups and results will be discussed. First, the evaluation metrics

and evaluation tasks are introduced. Then, all the experiments that were conducted on MS-MARCO

are detailed. Based on those results, a training pipeline for a bi-encoder is proposed and evaluated,

which includes the usage of extended data and a cross-encoder for negative sampling and knowledge

distillation.

6.1 Experimental Setup

For the evaluation, both the full MS-MARCO development set, and the geo-spatial subset (i.e., our

geo-spatial test set, described in Section 4.2.1) were considered. This way, besides evaluating geo-

graphic queries, the impact of fine-tuning on geographic data over other types of queries can be studied.

The evaluation task was top-1000 re-ranking, i.e., given the top-1000 ranked passages for a query, use

the models to re-rank them. The top-1000 passages to be re-ranked were obtained by Pyserini [Lin

et al., 2021] (i.e., a Python interface for Anserini), using a BM25 (Equation 2.16) approach that is tuned

for MS-MARCO. The hyperparameters b and k1 were set to 0.68 and 0.82, respectively.

The official evaluation measure for the MS-MARCO passage retrieval task is the Mean Reciprocal

Rank at the 10th passage (MRR@10), given by:

MRR@10 =
1

|Q|

|Q|∑
i=1

1

rank(i, 10)
. (6.1)

In the previous equation, Q is the set of queries, and rank(i, n) is a function that, given the top-n results

for the ith query, returns the position (rank) of the first relevant passage (if no passage is relevant, the

MRR is 0). The Recall at kth position (R@k) was also considered:

R@k =
1

|Q|

|Q|∑
i=1

|Reli ∩ Topk,i|
|Reli|

, (6.2)

where Reli and Topk,i are the relevant and the top k retrieved passages for the ith query, respectively.

39



0 10000 20000 30000 40000
Iteration

0.58

0.60

0.62

0.64

0.66

0.68

0.70
M

RR
@

10
MRR@10 on validation evolution during one epoch

Model
Cross-encoder
Bi-encoder

Figure 6.1: MRR@10 evolution during training for both cross-encoder and bi-encoders, considering the
validation task of top-25 re-ranking.

6.2 Experimental Results

This section will cover aspects regarding the experimental results. First, the behaviour of the different

model architectures during training will be analysed. Then, the evaluation on the geographic subset is

conducted, followed by the evaluation on the full MS-MARCO development set. Finally, a bi-encoder

trained following a pipeline that leverages the information learnt from the results is also evaluated.

Training Behaviour

Before addressing the results themselves, an analysis on the behaviour of the models during training

is addressed. Recall the geographic validation set, which consisted on 292 geographical queries and

their top-1000 passages from BM25. This was used to monitor the evolution of both cross-encoders

and bi-encoders during training, by evaluating the models every 1000 iterations. Instead of top-1000

re-ranking, the validation task was top-25 re-ranking, since frequent validation steps were taken, and

top-1000 would not be suitable in terms of time. Figure 6.1 shows the evolution of the MRR@10 on this

task, during one epoch, for one cross-encoder and one bi-encoder. Other models trained in the scope

of this work follow the same general behaviour, hence only one is shown for each.

As for the bi-encoders, they seem to benefit from training with a large number of examples (over

40.000 iterations at 32 pairs per iteration, means over 1 million query passage pairs). However, cross-

encoders seem to overfit the training data, as the performance on validation slowly converges to an

intermediate value. This is in accordance with previous studies that claim that cross-encoders do not

need much data for fine-tuning [Nogueira and Cho, 2019]. In this specific case, the base cross-encoder

40



Table 6.1: MRR@10 and R@{1,5,10,100, 500, 1000} for the geo-spatial subset of MS-MARCO, using
the different models.

MRR@10 R@1 R@5 R@10 R@100 R@500 R@1000

BM25 0.2560 0.1433 0.3893 0.5040 0.7797 0.8990 0.9366
BM25 + Geo. Distance Re-Rankings 0.2633 0.1518 0.4115 0.5143 0.7380 0.8887 0.9366
Base Bi-Encoder 0.4019 0.2631 0.5776 0.6792 0.8921 0.9366 0.9366
Base Bi-Encoder + Geo. Distance Re-Rankings 0.3841 0.2546 0.5451 0.6313 0.7962 0.8990 0.9366
Fine-tuned Bi-Encoder 0.4208 0.2878 0.5982 0.6832 0.8973 0.9366 0.9366
Fine-tuned Bi-Encoder (Extended Data) 0.4253 0.2878 0.6102 0.6889 0.9144 0.9366 0.9366
Base Cross-Encoder 0.4959 0.3333 0.6964 0.8002 0.9281 0.9366 0.9366
Base Cross-Encoder + Geo. Distance Re-Rankings 0.4652 0.3316 0.6142 0.7123 0.8116 0.8990 0.9366
Fine-tuned Cross-Encoder 0.5103 0.3607 0.6861 0.7968 0.9247 0.9366 0.9366
Fine-tuned Cross-Encoder (Extended Data) 0.5054 0.3539 0.6929 0.8025 0.9246 0.9366 0.9366
Distilled Bi-Encoder 0.4291 0.2997 0.5776 0.6809 0.9075 0.9366 0.9366

had already been pre-trained on the whole MS-MARCO collection, which may justify the early validation

peak at only one thousand iterations (32 thousand query passage pairs). This led to the hypothesis

that bi-encoder may benefit more from the extended training data than the cross-encoders. Given these

behaviors, the models considered for evaluation, in the case of bi-encoders, are the final ones, whereas

for cross-encoders is the best model at validation.

Geographical Queries

The main objective of this work was to improve ranking models for geographical passages. As such,

Table 6.1 shows the results achieved by the fine-tuned models, using the geographically-aware negative

sampling with BM25, along those obtained from the base models, for the queries in the geo-spatial

subset of MS-MARCO. The table also shows the result of a lexical BM25 baseline, together with a

re-ranking based on geographic distance.

While re-ranking based on geographic distance slightly improves the BM25 results, it worsens them

when re-ranking the top-1000 passages sorted by the base neural models (i.e., re-ranking passages

according to distance, and use the scores from the neural models in case of ties). However, by applying

this distance to re-rank passages when sampling hard negatives for fine-tuning the models, the results

improved overall. This suggests that while a naive use of geo-spatial distance may fail to improve over

strong neural baselines, the information may be used to improve model training.

For cross-encoders, the fine-tuned version achieves a better MRR@10 when compared to the base

model. Looking at the multiple recall cuts, the R@1 value also improves, while the R@{5, 10, 100}

values slightly decrease. As for bi-encoders, the results on this subset also improved when compared

to the base model, but this time all the recall cuts were superior. The distilled bi-encoder achieved the

best bi-encoder MRR@10 result, although the performance is still far from that of the cross-encoder

model. The cross-encoder behavior of improving R@1 and decreasing other cuts is also transferred in

this setting to in the distilled bi-encoder.

To identify the benefits of using more data, the results of training both a bi-encoder and a cross-

encoder with the original plus the generated data are also shown. The fine-tuning using extended data

followed the same setup, but a weighted cross-entropy was used, where original queries had 10 times

more weight than generated ones. This value of 10 was tuned on other tests over a validation set. While

cross-encoders do not seem to benefit from more training data, bi-encoders show a small improvement.

41



Table 6.2: MRR@10 and R@{1,5,10,100, 500, 1000} for the full MS-MARCO development set, using
the different models.

MRR@10 R@1 R@5 R@10 R@100 R@500 R@1000

BM25 0.1874 0.1008 0.2944 0.3916 0.6701 0.8116 0.8573
Base Bi-Encoder 0.2839 0.1667 0.4304 0.5416 0.7957 0.8535 0.8573
Fine-tuned Bi-Encoder 0.2679 0.1519 0.4124 0.5243 0.7840 0.8526 0.8573
Base Cross-Encoder 0.3714 0.2384 0.5385 0.6431 0.8289 0.8565 0.8573
Fine-tuned Cross-Encoder 0.3776 0.2504 0.5330 0.6375 0.8270 0.8564 0.8573
Hybrid with Cross-Encoder 0.3719 0.2395 0.5381 0.6429 0.8288 0.8565 0.8573
Distilled Bi-Encoder 0.2746 0.1692 0.3985 0.5097 0.7862 0.8526 0.8573
Hybrid with Distilled Bi-Encoder 0.2857 0.1696 0.4304 0.5416 0.7963 0.8535 0.8573

As a note, the base bi-encoder and cross-encoder were the best provided by SentenceTransformer

when the experiments started. However, during the experimental period, new models have been pro-

posed, which outperform the previous ones. While a robust analysis was not possible, some preliminary

experiments on fine-tuning the most recent bi-encoders show that their performance on the geographical

subset of MS-MARCO can be slightly improved using the strategy here described.

General Queries

So as to study the impact of the fine-tuning strategy on other types of questions, the models were

also evaluated on the full MS-MARCO development set. Table 6.2 shows the results achieved by the

fine-tuned models, using the geographically-aware negative sampling with BM25, along those for the

base models, and for a lexical BM25 baseline (retrieved using Pyserini), for all queries in the full MS-

MARCO development set. The fine-tuned cross-encoder managed to achieve a superior MRR@10 and

R@1, again slightly decreasing for other cuts. However, the bi-encoders seem to overfit to the specific

geographic context, as the performance of the fine-tuned models decreases in this set when compared

to the base models.

The results for hybrid approaches are also provided, considering the base cross/bi-encoder when

ranking non-geographic queries, and the best cross/bi-encoder otherwise. With this, we are able to

achieve results that slightly surpass the base models, since the fine-tuned models are better at ranking

passages for geographic queries. It is worth mentioning that the hybrid cross-encoder performed worse

on the full development set when compared to the fine-tuned cross-encoder, which means that the latter

is also better at some non-geographical queries than the original model. This may be due to the fact

that geographical queries do not necessarily mention place-names explicitly, despite implicitly including

geo-spatial criteria. The fine-tuned model may be performing better on these cases, which were not

included in the geographic subset because such queries do not contain any entities for Mordecai to

disambiguate.

It is worth noting that the results for the base models slightly differ from the ones reported by their

authors. This has two reasons. First, the top-1000 passages for each query used in this work were

extracted by Pyserini, which has a tuned BM25 retrieval method specific for MS-MARCO. This top-1000

is better in terms of recall at 1000 than the top-1000 BM25 passages provided by the MS-MARCO

authors. Second, for bi-encoders, the authors evaluate the task of full-ranking (i.e., extract the top-1000

from the whole collection), while this work covers top-1000 re-ranking.

42



Table 6.3: MRR@10 for the full MS-MARCO development set, grouping queries by their answer type.
Cross-Encoders Bi-Encoders

Query Type Number of Queries Base Fine-Tuned Base Fine-tuned

LOCATION 498 0.4550 0.4738 0.3538 0.3693
NUMERIC 1665 0.3690 0.3823 0.3022 0.2915
PERSON 461 0.4370 0.4365 0.2988 0.2932
DESCRIPTION 3725 0.3599 0.3607 0.2720 0.2568
ENTITY 631 0.3318 0.3461 0.2395 0.2471

To further understand the performance of the models for different types of queries, Table 6.3 shows

the results achieved by the base and fine-tuned models for all queries in the full MS-MARCO devel-

opment set, where the queries are grouped by their original types within the dataset (e.g., a PERSON

query is a query for which the answer is a person). As expected, LOCATION queries are the ones

where the fine-tuned models achieve the highest results, also showing the highest variation from the

base models to the fine-tuned ones. For cross-encoders, the scores improve for all query types, except

for a slight decrease in PERSON queries. For bi-encoders, the overfitting to the geo-spatial context

is again noticeable, since the fine-tuned model only improves the scores for LOCATION and ENTITY

queries.

Final Bi-Encoder Training Pipeline

As previously stated, the properties of bi-encoders make them computationally more efficient than

cross-encoders. As such, a final objective was to try to apply the previous techniques into the training of

a final bi-encoder model. The previous results can be summarized as follows:

• Both architectures benefit from the fine-tuning on the geographic domain;

• Bi-encoders can be improved by using a cross-encoder as the teacher model;

• Bi-encoders seem to benefit from more training data.

As such, the final training pipeline for a bi-encoder aggregated those strategies, as shown in Fig-

ure 6.2. Recall the best fine-tuned cross-encoder achieved during the previous experiments, which was

obtained by sampling negatives using the geographic distance on top of the top-25 BM25 passages for

each query on the original geographical train set of MS-MARCO. Following previous studies that have

leveraged cross-encoders during the selection of negative examples [Ding et al., 2020, Thakur et al.,

2020], the best fine-tuned cross-encoder was used to re-rank the candidate negative passages from

BM25, prior to being selected by their geographical distance. These negatives were then used to fine-

tune a bi-encoder. The cross-encoder was also used as the teacher model for knowledge distillation.

For the training of the bi-encoder, the extended data was considered.

The results of this experiment are shown in Table 6.4. In the first group, the base bi-encoder and

fine-tuned bi-encoder are shown again for comparison. The fine-tuned cross-encoder, which was the

one used for sampling and distillation, is also included. Results are shown for using the cross-encoder

for distillation only, sampling only, and the combination of both. When used separately, the sampling

43



BM25

Geo MS-
MARCO


Train

Geographical-Aware
Negative Sampling

BM25

QueryN


Top1000
passages

....


Top1000
passages

Query2


Top1000
passages

Query1


Top1000
passages Geographic Distance

First Training Examples

Top25
Query1


10 negatives
Query1


10 negatives
Query1


10 negatives
Query1


10 negatives

Fine-Tuned

Cross Encoder


Geographical-Aware
Negative Sampling

Geographic Distance

Top25

Query1


10 negatives
Query1


10 negatives
Query1


10 negatives
Query1


10 negatives

Extended

Geo MS-
MARCO


Train

BM25

E_QueryN

Top1000
passages

....


Top1000
passages

E_Query2

Top1000
passages

E_Query1

Top1000
passages

Auxiliar Model and Final Training Examples

Final Bi-Encoder

Fine-Tuned

Bi-Encoder

Knowledge
Distillation

Figure 6.2: Final training pipeline for a bi-encoder.

Table 6.4: MRR@10 and R@{1,5,10,100, 500, 1000} for the geo-spatial subset of MS-MARCO, using
the final bi-encoder, with previous results for comparison.

MRR@10 R@1 R@5 R@10 R@100 R@500 R@1000

Base Bi-Encoder 0.4019 0.2631 0.5776 0.6792 0.8921 0.9366 0.9366
Fine-tuned Bi-Encoder 0.4208 0.2878 0.5982 0.6832 0.8973 0.9366 0.9366
Fine-tuned Cross-Encoder 0.5103 0.3607 0.6861 0.7968 0.9247 0.9366 0.9366
Distilled Bi-Encoder 0.4291 0.2997 0.5776 0.6809 0.9075 0.9366 0.9366
CE Sampling Bi-Encoder 0.4377 0.2973 0.6005 0.7055 0.9145 0.9366 0.9366
Distilled + CE Sampling Bi-Encoder 0.4454 0.3094 0.5936 0.7118 0.9229 0.9366 0.9366

technique achieves better results than the knowledge distillation method. However, the combination of

both achieves the strongest bi-encoder on the geographical subset of MS-MARCO.

44



Table 6.5: Individual Reciprocal Rank (RR) scores for the positive passages associated to the 20 test
queries with the highest difference in the scores obtained by the base and the fine-tuned models (aver-
aged scores for cross-encoders and bi-encoders).

BM25 Baselines Cross-Encoders Bi-Encoders

Query Text Alone Geo. Re-Ranking Base Fine-Tuned Base Fine-Tuned

hot air balloon festival in maryland 1.0000 0.0000 0.3333 1.0000 0.0000 1.0000
benefits management fairport, ny 0.1429 0.1667 0.5000 1.0000 0.2500 1.0000
how much money will americans spend for easter 0.0000 0.1429 0.2000 1.0000 0.2000 0.5000
where is way st. binghamton 0.0000 0.0000 0.5000 1.0000 0.5000 1.0000
what happened in europe as a result of the cooling
in climate that occurred in the early fourteenth century 0.5000 0.0000 0.5000 1.0000 0.5000 1.0000

what is the zip code for helena mt 0.1250 0.1250 0.2500 1.0000 0.3333 0.5000
wenatchee washington population 0.1111 0.1111 0.1667 1.0000 1.0000 1.0000
what do partnerships file tax in michigan 1.0000 1.0000 1.0000 1.0000 0.1667 1.0000
which county is greenwood indiana 0.5000 0.5000 0.1600 1.0000 0.5000 0.5000
honolulu chinese new year celebration 1.0000 1.0000 1.0000 1.0000 0.2000 1.0000
population of waukesha wisconsin 0.0000 0.0000 1.0000 1.0000 0.2000 1.0000
what town in kansas is home to boot hill 0.5000 0.5000 0.2500 0.3333 0.3333 1.0000
captain of israel’s host 0.0000 0.0000 0.2500 0.5000 0.5000 1.0000
what year was the masstricht treaty 0.1667 0.2500 0.5000 0.5000 0.2500 1.0000
what is the population of perryville missouri 0.0000 0.0000 0.1429 0.3333 0.5000 1.0000
how far is it from chantilly va to baltimore 1.0000 1.0000 0.3333 1.0000 1.0000 1.0000
what is the current time in lagos nigeria 0.0000 0.0000 1.0000 1.0000 0.3333 1.0000
average gas costs in kentucky 0.0000 0.0000 0.5000 0.5000 0.3333 1.0000
driving distance littleton co to ft. collins co 0.0000 0.0000 0.5000 0.5000 0.3333 1.0000
what are the best plants for connecticut gardens 0.0000 0.1667 1.0000 1.0000 0.3333 1.0000

6.3 Qualitative Analysis

In an attempt to understand for which types of queries the fine-tuned models outperform the base

ones, Table 6.5 presents the individual reciprocal rank scores for 20 example queries from the MS-

MARCO development set, showing the results obtained with (a) the BM25 baseline, (b) BM25 comple-

mented with the geo-spatial re-ranking heuristic, (c) cross-encoder models, and (d) bi-encoder models.

The queries correspond to those with the highest difference in the reciprocal rank between the base

models (i.e., average between the base cross-encoder and dual encoder) and the fine-tuned models.

In all the example queries, the fine-tuned models performed equally or better than the base models,

despite the fact that some of the queries express a relation between two locations (e.g., our models

performed better on the query how far is it from chantilly va to baltimore, even though the proposed

approach does not model spatial relations), and despite some errors in the text geoparsing step (e.g., in

the case of the query how much money will americans spend for easter, the word easter was incorrectly

recognized as a reference to Easter Island on both the query and on the relevant passage, and only the

fine-tuned models could place the correct passage on the top result for this query).

To further understand the results, Table 6.6 presents 3 example queries and their relevant passages.

For both the base and the fine-tuned cross-encoders, SHAP was used to assign shapely values to

tokens, so as to depict which ones are contributing more for the ranking results. In the examples, both

models are taking the geographic entities into consideration, which is probably why the base models

already achieve strong results in the geographic subset. However, the fine-tuned model concentrates

the attention in those entities, while the base model distributes attention to other tokens. Similar behavior

45



Table 6.6: Tokens that contribute to classification for the cross-encoders. The higher the shade of red,
the higher the contribution.

Query Relevant Passage

Base Cross-Encoder
average winter temperature

in kent co. delaware

Kent County has a moderate but distinct four-season climate.
Average annual temperature: 55 Fahrenheit. January low
average temperature: 26.1 Fahrenheit. July high average
temperature: 87.2 Fahrenheit. The average annual rainfall is:
44.6 inches. The average annual snowfall is: 14.9 inches.

Fine-Tuned Cross-Encoder
average winter temperature

in kent co. delaware

Kent County has a moderate but distinct four-season climate.

Average annual temperature: 55 Fahrenheit. January low
average temperature: 26.1 Fahrenheit. July high average
temperature: 87.2 Fahrenheit. The average annual rainfall is:
44.6 inches. The average annual snowfall is: 14.9 inches.

Base Cross-Encoder what county is lumber ton,
nc

Lumberton is a city in Robeson County, North Carolina,

United States. The population has grown to 21,542 in the

2010 census from 20,795 in the 2000 census. It is

the county seat of Robeson County, the largest county in

the state. Lumberton, located in southern North Carolina’s Inner

Banks region, is located on the Lumber River.

Fine-Tuned Cross-Encoder what county is lumber ton,
nc

Lumber ton is a city in Robeson County, North Carolina,
United States. The population has grown to 21,542 in the
2010 census from 20,795 in the 2000 census. It is
the county seat of Robeson County, the largest county in
the state. Lumberton, located in southern North Carolina’s Inner
Banks region, is located on the Lumber River

Base Cross-Encoder what is prime rate in
canada

What is the Prime Rate? In Canada, the prime rate is a

guideline interest rate used by banks on loans for their most

creditworthy, best, or prime clients . The prime rate rises and
falls with the ebb and flow of the Canadian economy,
influenced significantly by the overnight rate, which is set
by the Bank of Canada.

Fine-Tuned Cross-Encoder
what is prime rate in

canada

What is the Prime Rate? In canada, the prime rate is a
guideline interest rate used by banks on loans for their most
creditworthy, best, or prime clients . The prime rate rises and
falls with the ebb and flow of the Canadian economy,
influenced significantly by the overnight rate, which is set
by the Bank of Canada.

Table 6.7: Tokens that contribute to classification for the bi-encoders. The higher the shade of red, the
higher the contribution.

Query Relevant Passage

Base Bi-Encoder
what county is lumberton ,

nc

Lumberton is a city in Robeson County, North Carolina ,
United States. The population has grown to 21,542 in the
2010 census from 20,795 in the 2000 census. It is
the county seat of Robeson County , the largest county in

the state. Lumberton , located in southern North Carolina’s Inner

Banks region , is located on the Lumber River.

Final Bi-Encoder
what county is lumberton ,

nc

Lumberton is a city in Robeson County, North Carolina ,
United States. The population has grown to 21,542 in the
2010 census from 20,795 in the 2000 census. It is
the county seat of Robeson County , the largest county in

the state. Lumberton , located in southern North Carolina ’s Inner

Banks region , is located on the Lumber River.

is present in the bi-encoder models. Table 6.7 shows one of the examples used for the cross-encoder,

where the fine-tuned bi-encoder also gives more attention to the relevant toponym when compared to

the base model.

46



Table 6.8: MRR@10 and R@{1,5,10,100, 500, 1000} for the geographic MS-MARCO development set,
for the base models and the best fine-tuned versions.

MRR@10 R@1 R@5 R@10 R@100 R@500 R@1000

Base Bi-Encoder 0.4019 0.2631 0.5776 0.6792 0.8921 0.9366 0.9366
Final Bi-Encoder 0.4454 0.3094 0.5936 0.7118 0.9229 0.9366 0.9366
Base Cross-Encoder 0.4959 0.3333 0.6964 0.8002 0.9281 0.9366 0.9366
Fine-tuned Cross-Encoder 0.5103 0.3607 0.6861 0.7968 0.9247 0.9366 0.9366

6.4 Overview

This chapter presented the experimental setup and results. The fine-tuned models were evaluated

on both the geographic subset and full development set of MS-MARCO. Techniques to further improve

the performance, such as knowledge distillation and data expansion were also evaluated. Then, those

techniques were used in one final training pipeline to fine-tune a bi-encoder.

The results are summarized in Table 6.8, which shows the results for the base cross-encoder and bi-

encoder models, and for the best versions achieved in this work. The best cross-encoder was achieved

by fine-tuning the base model using the geographically-aware negative sampling procedure, while the

best (i.e., the final) bi-encoder was the one which leveraged the aforementioned training pipeline.

47



48



Chapter 7

Conclusions and Future Work

This dissertation presented a fine-tuning setup for geographical passage retrieval, leveraging the

geographic distance between entities in queries and passages. This chapter overviews the main contri-

butions, and addresses directions for future work in this task.

7.1 Contributions

Geoparsed Data

In this work, the geographic subset of the MS-MARCO passage retrieval dataset was extracted,

leveraging Mordecai, an open-source tool to geoparse textual information. Entities within queries and

passages were identified, and a geographical subset containing training, validation and test sets was

built. A characterization of this subset was conducted, by analysing its queries and entities.

Fine-tuning Methods

A fine-tuning setup for both cross-encoders and bi-encoders, for the task of geo-spatial passage re-

ranking (i.e., retrieve relevant passages to questions involving place names) was proposed. The model

fine-tuning setup focuses on batch construction through a geographically-aware hard negative sampling

procedure. This procedure involves the usage of a notion of distance between queries and passages,

given their geographical entities. The usage of the distance was motivated by examining the relation

between the distance from a query and a passage, and the relevance of said passage to the query.

Other techniques were explored, namely a cross-architecture knowledge distillation method based on

the Spearman rank correlation coefficient, and the usage of extended training data.

Results

Experiments showed that both fine-tuned bi-encoders and cross-encoders benefit from the fine-

tuning for the geographic context. Also, for cross-encoders, the geographical fine-tuning did not com-

promise the ability of the model of re-ranking passages to other types of questions. After evaluating

all the employed techniques, a final bi-encoder was trained following a pipeline which leveraged data

augmentation, and fine-tuned a cross-encoder for negative sampling and knowledge distillation. This

model achieved the highest results of all bi-encoders on the geographic subset of MS-MARCO.

49



Availability

The code that supports the experiments described in this manuscript, along with the geoparsed

datasets (i.e., including the labels for geographic entities) and fine-tuned models, were made publicly

available.

7.2 Future Work

Besides MS-MARCO, the same experiments can be replicated on other benchmark datasets, for

instance NaturalQuestions, which has around 300 thousand queries, along with a collection of over 5

million passages. Data from GeoCLEF can be used to evaluate the models on pure geographical data.

However, the GeoCLEF task is document retrieval, instead of passage retrieval. As such, given the size

mismatch, other techniques need to be taken into account, for instance the usage of the Longformer

architecture [Beltagy et al., 2020].

Also, other types of data augmentation can be considered. For instance, instead of generating

queries, hard negative examples for a given query could be generated by entity replacement on the

query’s relevant passage. Preliminary experiments have been conducted on this subject, by replac-

ing some given geographical entity with another from the same administrative region. Further work is

needed, since results showed that the substitute entities generated by the tested method were noisy.

As for the architectures, other efficient and well-performing retrieval strategies, different from the

standard bi-encoders, can also be considered. This includes approaches such as SparTerm [Bai et al.,

2020] or ColBERT [Khattab and Zaharia, 2020].

Regarding model training, other techniques can be introduced. For instance, PAIR [Ren et al., 2021]

leverages a combination of query-centric and passage-centric similarity (i.e., instead of considering only

the similarity between queries and passages, the similarity between positive and negative passages

within a batch is also used to guide the loss). ADORE and SMILE [Zhan et al., 2021] are two training

techniques that focus on employing random negatives to stabilize the training, and using dynamic hard

negatives (i.e., use the bi-encoder under training to sample negatives at any given training step). Also,

instead of the standard binary cross-entropy, triplet-based losses can be considered, following a dynamic

margin which changes its value based on the geographic distance between the passages and the query.

Preliminary experiments on this subject were conducted, but further testing is needed.

Finally, while this work focused only on the geographical domain, the same negative sampling proce-

dure can be adapted for different domains. For example, temporal questions (e.g., queries focusing on

when a given event has taken place) also involve an inherent distance between temporal entities [Wang

et al., 2021b]. By using parsers that identify temporal entities within text (e.g., SUTime resolves them to

calendar dates), the work here described can be replicated for this domain.

50



Bibliography

Y. Bai, X. Li, G. Wang, C. Zhang, L. Shang, J. Xu, Z. Wang, F. Wang, and Q. Liu. Sparterm: Learning

term-based sparse representation for fast text retrieval. ArXiv, abs/2010.00768, 2020.

I. Beltagy, M. E. Peters, and A. Cohan. Longformer: The Long-Document Transformer. ArXiv,

abs/2004.05150, 2020.

M. Blondel, O. Teboul, Q. Berthet, and J. Djolonga. Fast differentiable sorting and ranking. In Proceed-

ings of the International Conference on Machine Learning, 2020.

D. F. Campos, T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, L. Deng, and B. Mitra.

MS MARCO: A Human Generated MAchine Reading COmprehension Dataset. In Proceedings of the

Workshop on Cognitive Computation co-located with the Annual Conference on Neural Information

Processing Systems, 2016.

A. Cardoso, B. Martins, and J. Estima. Using recurrent neural networks for toponym resolution in text.

In Proceedings of the EPIA Conference on Artificial Intelligence, 2019.

N. Cardoso, B. Martins, M. Chaves, L. Andrade, and M. J. Silva. The XLDB group at GeoCLEF 2005. In

Proceedings of the International Conference on Cross-Language Evalution Forum, 2005.

K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning. ELECTRA: Pre-training text encoders as discrimi-

nators rather than generators. In Proceedings of the International Conference on Learning Represen-

tations, 2020.

D. Contractor, S. Goel, Mausam, and P. Singla. Joint Spatio-Textual Reasoning for Answering Tourism

Questions. ArXiv, abs/2009.13613, 2020.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep Bidirectional Transform-

ers for Language Understanding. In Proceedings of the Conference of the North American Chapter of

the Association for Computational Linguistics, 2019.

Y. Q. Y. Ding, J. Liu, K. Liu, R. Ren, X. Zhao, D. Dong, H. Wu, and H. Wang. RocketQA: An Opti-

mized Training Approach to Dense Passage Retrieval for Open-Domain Question Answering. ArXiv,

abs/2010.08191, 2020.

C. Haas and S. Riezler. A corpus and semantic parser for multilingual natural language querying of

openstreetmap. 2016.

51



A. Halterman. Mordecai: Full Text Geoparsing and Event Geocoding. The Journal of Open Source

Software, 2(9), 2017.

E. Hamzei, S. Winter, and M. Tomko. Initial Analysis of Simple Where-Questions and Human-Generated

Answers. In Proceedings of the International Conference on Spatial Information Theory, 2019.

E. Hamzei, S. Winter, and M. Tomko. Templates of generic geographic information for answering where-

questions. International Journal of Geographical Information Science, 2021.

S. Han, X. Wang, M. Bendersky, and M. Najork. Learning-to-Rank with BERT in TF-Ranking. ArXiv,

abs/2004.08476, 2020.

S. Hofstätter, S. Althammer, M. Schröder, M. Sertkan, and A. Hanbury. Improving efficient neural ranking

models with cross-architecture knowledge distillation. ArXiv, abs/2010.02666, 2020.

S. Hofstätter, S. Lin, J. Yang, J. Lin, and A. Hanbury. Efficiently teaching an effective dense retriever with

balanced topic aware sampling. ArXiv, abs/2104.06967, 2021.

S. Hofstätter, M. Zlabinger, and A. Hanbury. TU Wien @ TREC Deep Learning ’19 – Simple Contextu-

alization for Re-ranking. In Proceedings of the Text REtrieval Conference, 2019.

X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and Q. Liu. Tinybert: Distilling BERT for

natural language understanding. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing, 2020.

T. Joachims. Optimizing Search Engines using Clickthrough Data. In Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2002.

J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with GPUs. ArXiv, abs/1702.08734,

2017.

O. Khattab and M. Zaharia. ColBERT: Efficient and Effective Passage Search via Contextualized Late

Interaction over BERT. In Proceedings of the International ACM SIGIR Conference on Research and

Development in Information Retrieval, 2020.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of the International

Conference on Learning Representations, 2015.

S. Kulkarni, S. Jain, M. J. Hosseini, J. Baldridge, E. Ie, and L. Zhang. Spatial language representation

with multi-level geocoding. ArXiv, arXiv:2008.09236, 2020.

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. ALBERT: A lite BERT for Self-

supervised Learning of Language Representations. In Proceedings of the International Conference

on Learning Representations, 2020.

C. Lawrence and S. Riezler. Nlmaps: A natural language interface to query openstreetmap. 2016.

52



H. Li, E. Hamzei, I. Majic, H. Hua, J. Renz, M. Tomko, M. Vasardani, S. Winter, and T. Baldwin. Neural

Geospatial Question Answering. Journal of Spatial Information Science, Under Review, 2020.

J. Lin, R. Nogueira, and A. Yates. Pretrained Transformers for Text Ranking: BERT and Beyond. ArXiv,

abs/2010.06467, 2020.

J. Lin, X. Ma, S. Lin, J. Yang, R. Pradeep, and R. Nogueira. Pyserini: An easy-to-use python toolkit to

support replicable IR research with sparse and dense representations. ArXiv, abs/2102.10073, 2021.

Q. Liu, M. J. Kusner, and P. Blunsom. A Survey on Contextual Embeddings. ArXiv, abs/2003.07278,

2020.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov.

RoBERTa: A Robustly Optimized BERT Pretraining Approach. ArXiv, abs/1907.11692, 2019.

Y. Lv and C. Zhai. Lower-Bounding Term Frequency Normalization. In Proceedings of the 20th ACM

International Conference on Information and Knowledge Management, 2011.

G. Mai, K. Janowicz, R. Zhu, L. Cai, and N. Lao. Geographic question answering: Challenges, unique-

ness, classification, and future directions. ArXiv, abs/2105.09392, 2021.

T. Mandl, P. Carvalho, G. M. D. Nunzio, F. C. Gey, R. R. Larson, D. Santos, and C. Womser-Hacker.

Geoclef 2008: The CLEF 2008 cross-language geographic information retrieval track overview. In

Proceedings of the Workshop of the Cross-Language Evaluation Forum, 2008.

B. Martins and P. Calado. Learning to Rank for Geographic Information Retrieval. In Proceedings of the

Workshop on Geographic Information Retrieval, 2010.

T. Mikolov, G. Corrado, K. Chen, and J. Dean. Efficient Estimation of Word Representations in Vector

Space. In Proceedings of the International Conference on Learning Representations, 2013a.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed Representations of Words and

Phrases and their Compositionality. In Proceedings of the Annual Conference on Neural Information

Processing Systems, 2013b.

B. Mitra, S. Hofstätter, H. Zamani, and N. Craswell. Conformer-Kernel with Query Term Independence

for Document Retrieval. ArXiv, abs/2007.10434, 2020.

R. Nogueira. From doc2query to docTTTTTquery. Technical report, University of Waterloo, 2019.

R. Nogueira and K. Cho. Passage Re-ranking with BERT. ArXiv, abs/1901.04085, 2019.

R. Nogueira, W. Yang, J. Lin, and K. Cho. Document Expansion by Query Prediction. ArXiv,

abs/1904.08375, 2019.

R. Nogueira, Z. Jiang, R. Pradeep, and J. Lin. Document Ranking with a Pretrained Sequence-to-

Sequence Model. In Proceedings of the Conference on Empirical Methods in Natural Language

Processing, 2020.

53



R. K. Pasumarthi, S. Bruch, X. Wang, C. Li, M. Bendersky, M. Najork, J. Pfeifer, N. Golbandi, R. Anil,

and S. Wolf. TF-Ranking: Scalable TensorFlow Library for Learning-to-Rank. In Proceedings of the

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

D. Punjani, K. Singh, A. Both, M. Koubarakis, I. Angelidis, K. Bereta, T. Beris, D. Bilidas, T. Ioannidis,

N. Karalis, et al. Template-based question answering over linked geospatial data. In Proceedings of

the ACM Workshop on Geographic Information Retrieval, 2018.

R. S. Purves, P. D. Clough, C. B. Jones, M. M. Hall, and V. Murdock. Geographic information retrieval:

Progress and challenges in spatial search of text. Foundations and Trends in Information Retrieval,

12(2-3), 2018.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring

the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning

Research, 21(140), 2020.

N. Reimers and I. Gurevych. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks.

In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, 2019.

N. Reimers and I. Gurevych. The curse of dense low-dimensional information retrieval for large index

sizes. ArXiv, abs/2012.14210, 2020.

R. Ren, S. Lv, Y. Qu, J. Liu, W. X. Zhao, Q. She, H. Wu, H. Wang, and J. Wen. PAIR: leveraging passage-

centric similarity relation for improving dense passage retrieval. In Findings of the Association for

Computational Linguistics: ACL/IJCNLP, 2021.

S. Robertson and H. Zaragoza. The probabilistic relevance framework: BM25 and beyond. Foundations

and Trends in Information Retrieval, 3(4), 2009.

F. Rosenblatt. The Perceptron: A Probabilistic Model for Information Storage and Organization in The

Brain. Psychological Review, 65(6), 1958.

G. Salton, A. Wong, and C. Yang. A vector space model for automatic indexing. Communications of the

ACM, 18(11), 1975.

V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled version of BERT: smaller, faster,

cheaper and lighter. ArXiv, abs/1910.01108, 2019.

N. A. Smith. Contextual Word Representations: A Contextual Introduction. ArXiv, abs/1902.06006,

2020.

N. Thakur, N. Reimers, J. Daxenberger, and I. Gurevych. Augmented SBERT: Data Augmentation

Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks. ArXiv, abs/2010.08240,

2020.

54



A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin.

Attention is All you Need. In Proceedings of the Annual Conference on Neural Information Processing

Systems, 2017.

J. Wang, A. Jatowt, M. Färber, and M. Yoshikawa. Improving question answering for event-focused

questions in temporal collections of news articles. Information Retrieval Journal, 2021a.

J. Wang, A. Jatowt, and M. Yoshikawa. ArchivalQA: A Large-scale Benchmark Dataset for Open Domain

Question Answering over Archival News Collections. ArXiv, abs/2109.03438, 2021b.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz,

J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao, S. Gugger, M. Drame,

Q. Lhoest, and A. Rush. Transformers: State-of-the-Art Natural Language Processing. In Proceedings

of the Conference on Empirical Methods in Natural Language Processing, 2020.

M. Wrzalik and D. Krechel. CoRT: Complementary Rankings from Transformers. ArXiv, abs/2010.10252,

2020.

C.-Y. Wu, R. Manmatha, A. J. Smola, and P. Krähenbühl. Sampling Matters in Deep Embedding Learn-

ing. In Proceedings of the IEEE International Conference on Computer Vision, 2017.

C. Xiong, Z. Dai, J. Callan, Z. Liu, and R. Power. End-to-End Neural Ad-Hoc Ranking with Kernel

Pooling. In Proceedings of the International ACM SIGIR Conference on Research and Development

in Information Retrieval, 2017.

H. Xu, E. Hamzei, E. Nyamsuren, H. Kruiger, S. Winter, M. Tomko, and S. Simon. Extracting interrog-

ative intents and concepts from geo-analytic questions. In Proceedings of the AGILE conference on

Geographic Information Science, 2020.

J.-Y. Yeh, J. Y. Lin, H.-R. Ke, and W.-P. Yang. Learning to rank for information retrieval using genetic

programming. In Proceedings of ACM SIGIR Workshop on Learning to Rank for Information Retrieval,

2012.

Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for optimizing average preci-

sion. In Proceedings of the International ACM SIGIR Conference on Research and Development in

Information Retrieval, 2007.

H. Zaragoza, N. Craswell, M. J. Taylor, S. Saria, and S. E. Robertson. Microsoft Cambridge at TREC

13: Web and Hard Tracks. In Proceedings of the Thirteenth Text REtrieval Conference, 2004.

J. Zhan, J. Mao, Y. Liu, J. Guo, M. Zhang, and S. Ma. Optimizing dense retrieval model training with hard

negatives. In Proceedings of the International ACM SIGIR Conference on Research and Development

in Information Retrieval, 2021.

55



56


	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	1 Introduction
	1.1 Methodology
	1.2 Results and Contributions
	1.3 Thesis Outline

	2 Fundamental Concepts
	2.1 Representing Textual Information
	2.2 Deep Learning
	2.2.1 Multi Layer Perceptron
	2.2.2 Transformer

	2.3 Bidirectional Encoder Representations from Transformers
	2.4 Ranking for Information Retrieval
	2.4.1 BM25
	2.4.2 Learning To Rank

	2.5 Overview

	3 Related Work
	3.1 Passage Retrieval
	3.1.1 Ranking with Cross-Encoders
	3.1.2 Ranking with Bi-Encoders
	3.1.3 Expansion Models
	3.1.4 Kernel Models

	3.2 Geographical Retrieval Methods
	3.3 Overview

	4 A Dataset for Geographic Question Answering
	4.1 Geoparsing Textual Data
	4.2 The MS-MARCO Dataset
	4.2.1 Geographical Subset of MS-MARCO
	4.2.2 Data Expansion


	5 Neural Models for Geographic Passage Re-ranking
	5.1 The Bi-Encoder and Cross-Encoder Architectures
	5.2 Model Fine-tuning
	5.2.1 Geographical Re-ranking
	5.2.2 Hard Negative Sampling and Batching
	5.2.3 Cross-Encoders
	5.2.4 Bi-Encoders

	5.3 Knowledge Distillation
	5.4 Overview

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Experimental Results
	6.3 Qualitative Analysis
	6.4 Overview

	7 Conclusions and Future Work
	7.1 Contributions
	7.2 Future Work

	Bibliography

